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Abstract—Disaggregated memory systems offer enormous
computational potential. Understanding the state-of-the-art dis-
aggregated memory architecture for deep learning and scientific
applications is especially important; memory is an expensive
resource and a bottleneck in scaled deep learning and scientific
computing. Our study aims to quickly and reliably answer
performance cost concerns about an emergent technology: disag-
gregated memory. We first propose classifying an application into
one of three categories using a simple, system-agnostic, easily-
replicated measurement. We then use an application’s category
to predict performance slowdown when using disaggregated
memory. Finally, we verify our model using results obtained
on a production, commercial off-the-shelf disaggregated memory
system available at the Argonne National Laboratory. This
paper will step through the simple measurement technique,
present the model for categorization, and then verify the model’s
effectiveness. Our study offers a simple, reliable mechanism to
answer the question - is this application an appropriate fit for
disaggregated memory? - reducing the cost uncertainty around
this emergent technology.

Index Terms—disaggregated memory, performance analysis,
deep learning, scientific computing

I. INTRODUCTION

Both historical and recent efforts suggest a shift toward
increasingly disaggregated architecture [1]. While storage has
been disaggregated for decades, and computing is increasingly
distributed, memory is still frequently accepted as a static
(albeit hierarchical) resource. The concept of disaggregated
memory is to have a discrete pool of memory connected
through a high-speed interconnect and available when and
where it’s needed. Disaggregated memory systems offer many
potentials for advantage, including flexible incorporation of
the latest memory technologies, an increasingly hybridized
memory hierarchy, and access to on-demand quantities of
memory.

This sounds excellent at the superficial level. However, it’s
well-understood all changes in technology come at a cost.
In order to be adopted at a wide scale, it’s necessary to
have assurance that the cost (both monetary and in devel-
oper/researcher time) of using an emergent technology will
be outpaced by its benefits. For disaggregated memory, this is
a particularly challenging question to answer.

Disaggregated memory systems are generally either built
on proprietary hardware (such as with HP’s The Machine [7]

or IBM’s dredbox [8] ), or the system exploits the memory
hierarchy, using some variety of fast storage instead of DRAM
[9]. Disaggregated memory systems are thus a) enormously
different in implementation, b) often expensive, b) of limited
public availability [10]. There is thus little prior work on a
simple, effective model to predict an application’s performance
when using disaggregated memory. This study is intended to
address this problem.

Toward our goal, our study consists of three parts. First, we
develop a categorization model that uses a simple, repeatable
measurement to classify applications into categories. We then
use an application’s category to estimate its performance
slowdown when running on a disaggregated memory system.
We verify our model using using nine benchmarks from deep
learning and scientific computing. We categorize each, predict
its magnitude of slowdown, and then run the application on
a production disaggregated memory system at the Argonne
National Laboratory (ANL) [5] [11]. Using our classification
model, a user can simply, quickly, and effectively answer the
question - how will my application perform on a disaggregated
memory architecture?

This paper is organized as follows. We start by introducing
background and related work in Section II. Section III presents
our proposed model for classification. In Section IV, we
present experimental results of nine deep learning and scien-
tific computing benchmarks on the production disaggregated
memory testbed to verify the effectiveness of our model.
Finally, Section V concludes the study.

II. RELATED WORK AND BACKGROUND

A. Prior Work in Disaggregated Memory

There are many studies examining various aspects of disag-
gregated memory computing. Previous works focus on propos-
ing architectures for disaggregated memory systems [12],
creating prototypes with proprietary hardware, and simulation.
The initial concept of disaggregated resources, and in particu-
lar disaggregated memory, was explored in the ’90’s. Andersen
and Neefe (1994) [13], for example, examined the field’s
current assumptions and proposed new directions. Lim et al.
[3] used memory usage patterns for several datacenters as well
as simulation to show that disaggregated systems can provide



substantial performance-per-dollar improvements where mem-
ory is a constraint. Rao & Porter [14] found that disaggregated
memory was an achievable, efficient architecture for Spark
SQL analytic queries; they used memory access data from a
Spark SQL instance to simulate how a disaggregated setup
may have negligible performance decrease. And Quiroga et
al. [15] studied a disaggregated memory prototype to find po-
tential bottlenecks in using disaggregated memory. They used
a custom framework based on IBM’s dReDBoX architecture
[8] consisting of memory and compute nodes orchestrated by
a controller. Because the compute-only nodes retain no local
memory, this system can be regarded as a fully-disaggregated
memory system. Their results highlighted that disaggregated
systems would need to carefully consider network bottlenecks
on data requests; they proposed packetization protocols could
contribute important performance improvement.

For deep learning in particular, Kwon & Rhu [16] propose
a deep learning-optimized disaggregated memory system that
focuses on providing GPU/NPU access to remote shared
memory. Their simulations make a case for the scalability of a
system dedicated to providing remote memory to accelerator
devices.

Distinguishing from these existing studies, our work is one
of the first to study application performance on a production
disaggregated memory testbed.

B. RAN
The RAN project at ANL is an initiative to try reshaping

how RAM is used [17]. The RAN project is currently attached
to Cooley, a visualization cluster at ANL [18]. Here, each of
the 126 compute nodes has an NVIDIA Tesla K80, two 6-core,
2.4-GHz Intel E5–2620v3s, one Mellanox InfiniBand FDR
card, and 384 GB RAM per node (see Fig. 1). The three remote
memory devices, together referred to as the “remote pool”,
have a cumulative 6 TB RAM, and 4 or 6 FDR InfiniBand
cards each (see Fig. 2).

This memory is a scheduled resource capable of assignment
to any number of nodes at a time. When memory is assigned to
a node or set of nodes, we call this “allocation”. The memory is
removed from the remote pool, and the node or nodes use their
local memory as a cache for access into the remote allocation.
The system is a write-back cache, where the local RAM cache
on a node is backed up to the remote allocation when certain
events trigger. All memory from the local cache is eventually
backed up to the remote device, though at any time, the local
cache may only have some subset of the node or process’s
memory present at a time.

In essence, the RAN project treats local RAM as an exten-
sion to the memory hierarchy, using some or all of a node’s
local RAM as a cache to the remote memory allocation. This
resembles some prior work [9] but differs in that the remote
devices are both COTS and consist of actual DRAM allocated
across the InfiniBand network.

III. CLASSIFICATION MODEL

In this section, we present our simple classification model
and discuss how to use it. Our model is built on an applica-

Fig. 1. The hardware in a Cooley node [18]

Fig. 2. The hardware in the RAN project [18]

tion’s major page fault behavior over time. We first discuss
the mechanism of measuring major page faults and the ideas
behind this choice. We then discuss our categorization model
that classifies applications into three categories according to
their major page fault patterns. For each category, we also
include the prediction of potential application slowdown when
running the application on a disaggregated memory system
such as RAN.

Again, we’d like to emphasize how intentionally simple
this model is. The idea behind this project is to develop
a classification system that is accessible to any user with
access to a machine that is able to run their benchmark. It’s
complicated enough to develop applications, especially for an
emergent technology - we don’t want to add undue complexity
with our model, as that’s contrary to the goal of demystifying
application suitability on disaggregated memory.

A. Measuring Major Page Faults

Modern processor design accommodates major page fault
measurement almost universally. Performance monitoring
packages, such as the built-in Linux tool perf, can collect a
system’s major page faults over time and output these results
to a CSV or even standard out. From there, it’s fairly trivial
for a programmer to collect the data and make a simple plot
showing major page faults over time. For example, a runtime
script using perf is available at our project’s GitHub repository
[22].

We chose this measurement based on the following factors.
If we truly view our disaggregated memory system as an
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Fig. 3. Our classification model

extension to the typical memory hierarchy, then we can view
the local memory as another (admittedly much slower) level
to the cache and the remote memory occupies the hierarchical
spot typically reserved for DRAM. Major page faults are thus
equivalent to the last-level cache (LLC) miss rate, a well-
documented and well-understood metric to determine if an
application will work with the system’s cache rather than
against it [27]. Thus, we can use major page faults over time
as a simple litmus test to determine if an application is well or
poorly suited for running on a disaggregated memory system.

There are several potential pitfalls inherent to this measure-
ment. First, the user must ensure they run their application
on a system which can exhibit major page faults. The system

must have storage - or something of equivalent use which the
kernel can page out to.

Second, the user must ensure the application under study
uses sufficient memory to require at least one page fault.
Any application which uses more than a page of memory can
exhibit a major page fault behavior, and while page sizes are
configurable, the typical modern size of a Linux OS page
is 4 MB [28]. To oversimplify, an application which does
not use at least a page’s worth of memory is unlikely to
experience paging. Furthermore, if an application were very
low in memory demand, it’s unlikely a disaggregated memory
architecture is needed at all.

Third, and this may go without saying, it’s important the
user runs an application which actually can page out to
memory. Again, it’s unlikely a user will want to make use
of disaggregated memory without needing lots of memory,
but it’s good to be explicit at this stage. Additionally, it is
recommended the user test their application on a system which
can handle the computational load of the program but which
also has insufficient local memory to complete the program’s
runtime fully in-memory. This way, the user can ensure they
observe their application’s major page fault behavior.

B. Classification and Prediction

Once a user collects their application’s major page fault be-
havior, our model can provide classification and performance
predictions.

We separate applications into three categories based on
the measured major page faults over time: batched, pulsed,
and sustained. There are simple delineations between these.
A batched application will have few peaks with periods of
zero major page fault activity separating the peaks, with at
least 60% of the application’s runtime displaying zero major
page faults. A pulsed application will have frequent, possibly
periodic peaks with periods of zero major page fault activity
between the peaks, and it will spend between 60% and 20% of
the runtime with zero measured major page faults. Finally, a
sustained application will have constant or near-constant major
page fault activity, possibly with peaks, but without periods of
zero major page fault activity. It will spend less than 20% of
its runtime with zero major page faults measured.

Any application falling into the batched category is ex-
pected to experience minimal performance slowdown if using
disaggregated memory. An application fitting into the pulsed
category can expect moderate slowdown, up to a 100%
slowdown. And applications in the sustained category are
expected to experience severe slowdown, well over 100%.
Applications which exhibit pulsed behavior may do well on a
disaggregated memory architecture with minor modifications
to code structure, so if it is valuable to move to the novel
system, it may be worth the user’s time to attempt such
modifications. And an application falling into the batched
category is likely to run well on a disaggregated memory
system out-of-the-box. See Fig. 3 for a visual representation
of this model.



The delineations between categories were chosen based on
extensive observation of a suite of representative applications
from deep learning and scientific computing fields. Fig. 4
demonstrates the major page fault behaviors and categories
of three applications which will be described in Section IV.

CANDLE P1B3
Batched Category

CANDLE P2B1
Pulsed Category

NPB UA
Sustained Category

Fig. 4. Example runtime measurement and resulting classification from three
benchmarks, x-axis represents time and y-axis measured major page faults
per second

IV. MODEL VALIDATION

In this section, we use our categorization model to examine
nine benchmarks, predict their performance slowdown in a
disaggregated memory environment, and verify the prediction
against the actual results collected from running these bench-
marks on the RAN testbed.

A. Benchmarks

We selected benchmarks from both the CANDLE and the
NPB suites. The benchmarks were selected as they exhibit
different runtime and memory behaviors, and the major task
from each benchmark is given in Table I.

1) CANDLE: The CANcer Deep Learning Environment, or
CANDLE, is an NIH-led Exascale Computing Project (ECP).
Its goal is to build a scalable deep neural network (DNN)
capable of simultaneously addressing three major concerns for

TABLE I
BENCHMARK TASKS

Benchmark Task

CANDLE P1B1 Autoencoder Compressed Representation for
Gene Expression

CANDLE P1B2 Sparse Classifier Disease Type Prediction
from Somatic SNPs

CANDLE P1B3 MLP Regression Drug Response Prediction

CANDLE P2B1 Autoencoder Compressed Representation for
Molecular Dynamics Simulation Data

CANDLE P3B1 Multi-task Deep Neural Net (DNN) for data
extraction from clinical reports

NPB CG Conjugate Gradient, smallest eigenvalue of
sparse, symmetric matrix

NPB FT Fast Fourier Transform, 3D partial differen-
tial equation solution

NPB IS Integer Sort, typical sort method

NPB UA Unstructured Adaptive mesh, solve stylized
heat transfer problem

cancer research (the “RAS pathway problem”, the “drug re-
sponse problem”, and the “treatment strategy problem”). Each
area of concern is at a different scale (cellular-level, molecular-
level, and population-level), and each problem space has
unique challenges [6].

CANDLE has benchmarks separated over the three problem
spaces. Pilot1 (P1) benchmarks concern problems and data at
the cellular level, and the goal is to predict drug responses
based on molecular data from tumors and drugs. Pilot2 (P2)
benchmarks concern the molecular scale, and the goal is to as-
sist in simulating molecular dynamics. Pilot3 (P3) benchmarks
concern population-level data, and the goal is to predict cancer
reappearance. The benchmark names follow the convention
P#B#, where P# is either P1, P2, or P3 for the three different
problem spaces, and B# is the benchmark number under that
space. Our experiments cover benchmarks P1B1, P1B2, P1B3,
P2B1, and P3B1.

2) NPB: The NASA Parallel Benchmark suite (NPB) is a
set of benchmarks that measure performance on highly parallel
systems. They are designed with versatility in mind, allowing
users to vary the problem size as needed, while covering
several fundamental algorithms [25]. We chose 4 benchmarks
representing the cases of using irregular, strided, and random
memory access as well as long-distance communication.

B. Benchmark Categorization, Prediction, and Observation

We first categorize each benchmark. Due to the page limit,
we will not show graphs of major page faults over time for
each benchmark, but such graphs are readily available in our
github repository [22]. We then use our model to predict the
magnitude of slowdown experienced by each benchmark, and
we validate this against the measured slowdown when running
on RAN.

It’s useful to discuss our experimental setup on RAN at this
stage. ANL’s Cooley has nodes with 384 GB DRAM each.
Each experiment has access to 100GB of DRAM located on
the remote memory device. After each experiment terminates,
the remote memory is wiped and returned to the available
remote memory pool (see the background section on RAN as



well as [5] for details). We run each experiment first using only
local RAM, and given the size of the node, each benchmark
runs in memory in this mode. We then run each benchmark
with approximately 50% the needed memory available as a
local memory cache; in other words, 50% of the data needed
at any moment can fit in the local memory, but the remote
memory will be required to complete the benchmark run. We
then calculate the performance slowdown, defined in Formula
(1), and see if this matches with our model’s predictions. Here,
S is the slowdown, tcontrol is the application’s runtime using
local memory, and t is the application’s runtime using remote
memory.

S =
t− tcontrol
tcontrol

∗ 100% (1)

The benchmarks, their category under our model, their
expected slowdown, and their observed slowdown is presented
in Table II and graphically depicted in 5.

TABLE II
BENCHMARK CATEGORIES, PREDICTIONS, AND OBSERVATIONS

Benchmark Category Expected
Slowdown

Average
Slowdown

CANDLE P1B1 Batched Minimal 9%
CANDLE P1B2 Pulsed Moderate 27%
CANDLE P1B3 Batched Minimal -22%
CANDLE P2B1 Pulsed Moderate 100%
CANDLE P3B1 Batched Minimal -15%
NPB CG Sustained Severe 291%
NPB FT Sustained Severe 923%
NPB IS Sustained Severe 421%
NPB UA Sustained Severe 305%

We thus observed the expected slowdown for all bench-
marks under our categorization model. Of note, some bench-
marks appear to perform faster when using disaggregated
memory. Investigating this suggests driver differences are
the cause; the proprietary drivers in the RAN system use a
different version of malloc that is more efficient in some uses.

Fig. 5. Correlation between model classification and performance slowdown

V. CONCLUSIONS

The above experimental study demonstrates the effective-
ness of our categorization model and provides a way to answer
to the question raised in Section I, that is, how will an
application perform on a disaggregated memory architecture?

We propose a simple, replicatable, reliable method for
estimating an application’s performance when using disag-
greagated memory. An application exhibiting sustained major
page fault behavior across varied local RAM sizes experiences
a steep increase in performance slowdown the more remote
memory is used. In contrast, applications exhibiting pulsed
or batched major page fault behavior experience little to no
performance slowdown regardless of how intensely the remote
memory is used, and thus, they are suitable candidates for
running on a disaggregated memory architecture. It is straight-
forward to characterize applications using their major page
fault behaviors (using standard hardware and libraries), and
the resulting category indicates whether or not an application
is a good fit for using disaggregated memory.

This study also demonstrates the benefits of a disaggregated
memory architecture for a range of applications. It is entirely
possible to reduce node requirements without severely impact-
ing the performance of a workload as long as that workload
falls into the pulsed or infrequent major page fault patterns. For
instance, for the memory-intensive benchmark (P2B1), using a
local RAM cache as little as 64 GB (a local memory reduction
of over 80%!) , we observe a slowdown of 30%. This shows,
using remote memory, per-node memory can be reduced to
meet an average workload rather than requiring some or all
nodes to accommodate the most demanding workloads. Given
the demand and expense of memory, this is certainly a positive
outlook and deserves increased study.

Our work is intended to offer empirically-backed guidance
for running applications on a disaggregated memory system;
significant further work is needed to generalize our findings
concretely and broadly. To that end, our final suggested
use of this work is as a spring-board into further empirical
study and modeling of application performance when using
disaggregated memory.

As HPC systems become increasingly heterogeneous, it is
becoming increasingly difficult to predict ahead of time what
applications are a suitable fit for a new architecture. We hope
this study formalizes and demystifies predicting application
performance on disaggregated memory.
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