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Abstract
Disaggregated memory architectures provide benefits to ap-
plications beyond traditional scale out environments, such as
independent scaling of compute and memory resources. They
also provide an independent failure model, where computa-
tions or the compute nodes they run on may fail independently
of the disaggregated memory; thus, data that’s resident in
the disaggregated memory is unaffected by the compute fail-
ure. Blind application of traditional techniques for resilience
(e.g., checkpoints or data replication) does not take advantage
of these architectures. To demonstrate the potential bene-
fit of these architectures for resilience, we develop Memory-
Oriented Distributed Computing (MODC), a framework for
programming disaggregated architectures that borrows and
adapts ideas from task-based programming models, concur-
rent programming techniques, and lock-free data structures.
This framework includes a task-based application program-
ming model and a runtime system that provides scheduling,
coordination, and fault tolerance mechanisms. We present
highlights of our MODC prototype and experimental results
demonstrating that MODC-style resilience outperforms a
checkpoint-based approach in the face of failures.

1 Introduction

Recent technology advances in high-density, byte-addressable
non-volatile memory (NVM) (e.g., [23,37,40,43,46]) and low-
latency interconnects (e.g., [2, 8, 29]) have enabled building
rack-scale systems with a large disaggregated memory pool
shared across decentralized compute nodes.

Disaggregated memory architectures present independent
failure domains and a partial failure model: computations or
the compute nodes they run on may die, but disaggregated
memory remains available. When a compute node fails, up-
dates propagated to disaggregated memory remain visible to
other compute nodes. This partial failure model avoids a com-
plete system shutdown in the event of a component failure.
This failure model is an improvement over the failure model
of scale up architectures, where a compute failure causes the
failure of the entire application (and potentially the failure of
the entire machine). It’s also an improvement over the failure
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model of scale out architectures, where a compute node fail-
ure may render a part of the dataset unavailable, unless the
data is stored redundantly across nodes.

The applications that thrive in a disaggregated memory
environment have large and long-lived datasets that aren’t
amenable to traditional resilience techniques such as check-
pointing. For example, large-scale graph analytics applica-
tions at social media companies like Facebook operate over
graphs with billions of vertices and trillions of edges that
consume hundreds of petabytes [14]. Such applications may
benefit from maintaining data in disaggregated memory for
resilient computation on the graph data.

We develop Memory-Oriented Distributed Computing
(MODC), a framework for programming disaggregated ar-
chitectures, by borrowing and adapting ideas from task-
based programming models, concurrent programming tech-
niques, and lock-free data structures. Task-based program-
ming achieves fine-grained recoverability without explicit
checkpoints. Developers write applications as a collection
of idempotent tasks that operate on data items resident in
disaggregated memory, and specify data and control depen-
dencies between the tasks. The underlying runtime system
uses this dependency information to schedule the tasks such
that dependencies are satisfied, and to restart tasks if they fail.

The programming model is layered on top of a runtime sys-
tem designed for a disaggregated environment where the dis-
aggregated memory may not have general-purpose computa-
tional capabilities. As a result, we do not use server processes
to actively manage scheduling, failure detection and coordina-
tion. Instead, our approach leverages shared data structures in
disaggregated memory to encapsulate global state. Workers
in a user application access these concurrent data structures
in a decentralized fashion through a library interface to the
MODC runtime. The runtime library uses one-sided opera-
tions and lock-free programming techniques to operate on the
shared data structures, which ensures deadlock freedom and
progress of the runtime in the event of compute failures. In
particular, disaggregated memory holds dependency-tracking
metadata and per-worker work queues, which enables work
stealing to respond to failures and load imbalances.

We demonstrate that MODC enables resilient applications
with lightweight failure recovery (e.g., with less than 1%
penalty, as compared to failure-free execution). A checkpoint-
based failure recovery approach is as much as 51% slower
than the MODC approach.



2 Background

We begin by providing background on task-parallel program-
ming models and disaggregated memory systems, as well as
stating our system model.

2.1 Task-parallel programming

In task-parallel programming [13], the programmer decom-
poses an application into units of work, called tasks, that may
execute in parallel. Programmers focus on structuring their
program to expose parallelism, while an underlying runtime
system takes on the responsibility of dynamically scheduling
and executing tasks among a pool of workers.

Traditionally, tasking systems have primarily relied on
global checkpoint/restart mechanisms for tolerating task fail-
ures. However, recent work has investigated other approaches
to handling task failures. Resilient X10 [19] proposes exten-
sions to the X10 task-parallel language [17] to expose failures
to programmers, who can then handle individual task fail-
ures by exploiting domain-specific knowledge. CIEL [36]
and Ray [34], like us, provide transparent lineage-based fault
tolerance. They log function calls and require arguments and
results of tasks to be immutable, so that they can use the lin-
eage to transparently restart individual tasks on the event of a
failure. A key difference is that our work leverages disaggre-
gated memory to fail over computation from a failed worker
to another live worker in a decentralized manner, by letting
live workers steal work from a failed worker.

Dataflow systems, such as MapReduce [20], Dryad [25],
and Spark [47] adopt a bulk-synchronous parallel (BSP) exe-
cution model, where all tasks within the same stage perform
the same computation and cannot recursively create other
tasks. MapReduce limits the dataflow to a bipartite graph
comprising map and reduce tasks. Dryad extends the MapRe-
duce model to allow computation to be expressed into a more
general directed acyclic graph (DAG), but lacks support for
dynamic task graphs, which can be useful for iterative and
incremental computation. Spark does support dynamic task
graphs, by dynamically tracking task dependencies through a
centralized scheduler and adopting lineage-based fault toler-
ance. However, invoking the centralized scheduler at the end
of each task adds overhead and increases latency. Streaming
dataflow systems, such as Naiad [35] and Flink [15], imple-
ment the dataflow using a graph of continuous operators or
long running tasks, avoiding frequently invoking a centralized
scheduler, but limiting support to static task graphs.

Architectures based on dataflow languages [24] control pro-
gram execution using actors that consume objects as inputs
and produce objects as outputs. While these architectures also
track dependencies among actors as part of program execu-
tion, the underlying actors are much more granular than our
tasks, rely on specialized hardware for program execution and
dependency management, and are not focused on resilience.

2.2 Rack-scale disaggregated memory

Resource disaggregation is a popular approach for specializ-
ing resources allocated to a workload. Increasing attention
is being paid to leveraging memory resources outside of tra-
ditional compute nodes. Here we focus on disaggregated
memory, rather than remote memory solutions where com-
pute nodes share their memory with other compute nodes. In
disaggregated memory system organizations, memory that is
distinct from compute node memory is exposed over a fast
network. Disaggregated memory may be constructed with
intelligent memory servers containing general-purpose pro-
cessors (e.g., [31,32]) connected via RDMA (e.g., [11,33,42])
or special purpose interconnects (e.g., [38,41]), or as network-
attached memory controllers with more limited intelligence
(e.g., [3, 10]). Depending on the implementation, disaggre-
gated memory may also be augmented with additional sup-
port for metadata operations (e.g., [44]). Disaggregation pro-
vides separate fault domains between processing and memory,
meaning that the failure of a compute node doesn’t render
disaggregated memory unavailable.

2.3 Target environment and assumptions

In this work, we target a disaggregated memory architecture
containing a high-capacity pool of memory that can be shared
by compute nodes at low latency. This memory is directly
connected to the interconnect, as defined in the Gen-Z stan-
dard [21], without an explicit memory server with general-
purpose processing capabilities. Memory controllers serve
non-volatile memory (NVM) on the fabric, which offers dura-
bility without the overheads of traditional storage devices.
Compute nodes also have local memory, which is treated as
private, while the disaggregated memory is treated as shared.

Compute nodes access disaggregated memory using load
and store operations, atomic memory fabric operations (e.g.,
compare-and-swap (cas)) and one-sided (e.g., get and put)
operations. Disaggregated memory presents a logical address
space that is uniform across all compute nodes. Thus, any
compute node can access any part of disaggregated memory
in a byte-addressable manner.

Since rack-scale disaggregated NVM forms the primary
persistence layer, it needs to be protected against memory
hardware failures to avoid data loss. Hardware redundancy
schemes have been proposed to protect both DRAM (e.g.,
[28, 48]) and NVM (e.g., [22, 26, 30]). While these schemes
protect against memory cell or chip failures, they do not pro-
tect against failures that render a whole memory node un-
available, such as memory controller or power supply failures.
Hence, we assume a hardware redundancy scheme is used in
combination with software-managed memory replication to
protect disaggregated NVM. Using memory-side accelerators
(e.g., [27]) can decentralize and minimize compute node over-
heads for memory replication. Additionally, we assume that



the memory interconnect incorporates sufficient component
and path redundancy to prevent partitions.

3 MODC programming model

Programmers use resilient parallel jobs and tasks as a way
to decompose and recover data processing computations. A
resilient parallel application is structured as a set of restartable
execution units (idempotent tasks). Each task is defined as
a function with an explicitly specified set of disaggregated
memory-resident inputs and outputs. It applies a transforma-
tion on its input data to produce its output data. The output
of one task may serve as an input to another task, creating an
input-output data dependency. Inputs and outputs are speci-
fied by names, which are resolved at runtime, thus permitting
decoupled execution of producer and consumer tasks. A pro-
ducer task can produce output data without knowing which
consumer task (if any) will consume it, and a consumer task
can consume data without knowing which task produced it.
Similarly, output data may be treated as a future, allowing a
consumer function to be scheduled before its inputs are fully
generated; its execution is delayed until those inputs are ready
(i.e., when the task(s) that produce the data are done).

Additional control dependencies (e.g., completion of all
tasks in a set or task ordering that depends on the specific val-
ues produced rather than the existence of data) are expressed
using a job abstraction, which describes a collection of tasks.
Control dependencies may exist between jobs, but not be-
tween tasks within a single job. An application is comprised
of one or more jobs and their constituent tasks (Figure 1).

Expressing data dependencies with named data items rather
than explicit communication between tasks means that tasks
don’t need to be aware of where they (or their predecessors or
successors) are run. Since tasks can be scheduled for execu-
tion on an arbitrary node, and may be restarted on a different
node in case of failure, they are required to be idempotent:
given the same input, they are expected to produce the same
output. To enable restarting an idempotent task, the task’s
input data must remain available until the task successfully
completes. Tasks are also expected to be side-effect free in the
sense that they don’t have side channels for communicating
state that aren’t visible to the framework.

The programming model supports a dynamic parallelism
form of autoscaling, where work can be dynamically decom-
posed to provide (arbitrary) levels of parallelism, depending
on the amount of data to be processed. The programmer de-
fines the granularity of the jobs and tasks, and thus can strike
a balance on a case-by-case basis between increased paral-
lelism, lower chance of stragglers, and reduced recovery time
from smaller tasks vs. increased efficiency from larger tasks
(due to lower scheduling overhead and greater execution effi-
ciency without intra-task communication).

The application dynamically spawns tasks, and manages
control dependencies while the underlying framework handles
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Figure 1: Resilient task execution by two workers.

data dependencies, task scheduling, and failure recovery. The
framework asynchronously executes each task with all-or-
nothing semantics, and re-schedules tasks that fail.

4 MODC runtime

MODC’s runtime supports the programming model using a
design that avoids any centralized service that may become
a performance bottleneck or single point of failure. Space
limits prevent us from describing the full runtime in detail;
instead, we focus on the design principles and functionality
most germane to scheduling and fault tolerance.
Design principles: MODC’s runtime adheres to two design
principles. First, application and runtime global state is main-
tained as shared data structures in disaggregated memory that
are visible to all participating processes, regardless of what
nodes they run on. Because all processes have direct access
to global data structures, they can share data efficiently, ser-
vice requests, and perform analyses for any part of a dataset,
thus providing better load balancing and more robust perfor-
mance in the face of skewed workloads. Shared access to
global data also simplifies coordination, as participants need
not exchange messages to establish a common view of global
state. Processes maintain their persistent state in the shared
pool, and since compute nodes and disaggregated memory
fail independently, this persistent state survives the failure
of any participating process or node. If a participant dies,
any other participant can pick up where the failed participant
left off, simplifying failure recovery. Second, internally, the
MODC runtime relies on lock-free synchronization for safe
concurrent access to its internal data structures. Lock-free
synchronization typically involves splitting an operation into a
non-critical section activity and a short critical section, which
is accomplished atomically through a fabric-supported atomic
such as a compare-and-swap (cas). Lock-free synchroniza-
tion enables some active process to make progress despite
other process delays or halting failures, offering us a powerful
tool to handle compute node failures.
Design overview: MODC’s scheduler is implicit, in that a par-
ent task creates and schedules its child tasks. This approach



supports a dynamic parallelism model, where a logical task
graph is created dynamically as new tasks are scheduled. The
scheduling runtime functionality is carried out by workers,
which track task dependencies, execute tasks whose depen-
dencies are met, update scheduler metadata to report task
completion, and re-execute failed tasks in the event of task,
worker or compute node failures. The scheduling runtime it-
self is fault-tolerant, written using lock-free programming and
concurrent, shared data structures in disaggregated memory.

The MODC framework assumes that a distributed appli-
cation’s parent job is instantiated by a workload manager
that is external to the MODC runtime (e.g., mpirun() [6]
or SLURM [9]). The workload manager instantiates a per-
application worker pool of processes, where the initial pool
size is determined by the application. The worker pool is per-
application to reduce inter-application interference. The pool
of workers may be dynamically resized as the application
executes (e.g., if more than some threshold of the original
workers fails, or if the average number of ready tasks per
worker exceeds or falls below a threshold).

Each worker maintains its own task queue, which contains
pointers to task descriptors for tasks that are ready to be ex-
ecuted (i.e., have all of their dependencies satisfied). Task
queues are allocated in disaggregated memory, so that they
remain accessible if a worker fails. An idle worker can steal
tasks from another overloaded or failed worker. Work stealing
enables dynamic load balancing and failing over a computa-
tion from a failed worker to another live worker in a decentral-
ized manner without involving a centralized scheduler (which
can become a bottleneck or single point of failure).
Enforcing control and data dependencies: Before a task
can be added to a worker task queue, all of its control and
data dependencies must be satisfied. The scheduling runtime
tracks these dependencies using a collection of concurrent
data structures in disaggregated memory. Internal scheduler
metadata includes job and task descriptors containing meta-
data describing submitted jobs and tasks, and data structures
to track progress on data and control dependencies.

To enforce control dependencies between tasks, the runtime
must be able to identify in a fault tolerant manner when all
tasks of a job complete execution. We take a work-oriented
approach, where a group of workers executing tasks of a job
reach consensus that they all finished executing tasks in their
queues through the aid of a dynamic group barrier. When
each worker finishes executing the tasks in its own queue, it
tries to steal and execute tasks from other workers’ queues.
When it finds no more available tasks to steal, it waits on the
barrier for all other workers to finish executing their tasks or
until it receives a signal to steal work from a failed worker.

Like a traditional group barrier, our dynamic group barrier
allows members of a group to collectively reach an execution
point before they proceed. Additionally, it allows member-
ship to change dynamically, so that active members don’t wait
for failed ones. The barrier comprises an array vector with

a slot per member to indicate its participation in the barrier,
two monotonically increasing sequence counters indicating
membership changes and barrier releases, and a counter rep-
resenting the number of members waiting on the barrier. All
counters are placed contiguously in a 128-bit word so that
they can be modified atomically using a 128-bit cas. When a
failed worker is detected, a participant increments the mem-
bership sequence to indicate the change. When arriving at a
barrier, a member counts the number of active members and
increments the waiting counter; if the active member counter
matches the waiting count, then it releases the barrier. Mem-
bers spin-wait on the barrier by continuously reading the two
sequence counters for changes either in membership or barrier
release. Upon a membership change, each waiting member
cancels its waiting, allowing it to resume and help with the
execution of tasks previously assigned to the failed worker.
Executing tasks: Workers cooperatively execute tasks
through work stealing, with each worker having its own
task queue, which is structured as a lock-free circular-array
deque [18]. Each worker pulls existing tasks from and pushes
newly spawned tasks to one end of its queue, while other
workers can steal tasks from the other end (Figure 1). Each
queue descriptor has a field that identifies the queue’s cur-
rent owner worker process. The runtime represents each task
through a task descriptor that holds scheduling-related infor-
mation, including the associated job, the task ID within the
job, the task’s execution status, and the task’s serialized clo-
sure. Each worker also maintains a slot with a pointer to the
descriptor of its last running task. The queue, task descriptors
and running slot are allocated in disaggregated memory, so
that they remain accessible if a worker fails.

Task execution supports two stealing cases. First, idle work-
ers can steal tasks from the top end of another worker’s
queue. If multiple workers attempt to execute the last task
in a worker’s queue, only one worker will succeed in issu-
ing the cas to switch the task status from READY to RUNNING,
thus guaranteeing exactly once execution. Second, upon a
worker failure, a live worker can steal a task from the failed
worker’s running slot. A worker that finds a running slot with
a READY task can simply take over and complete the stealing
procedure, as described above. If the task’s status is RUNNING
(i.e., the worker failed before completing the task), then the
runtime simply re-runs the task, since tasks are considered to
be idempotent.
Detecting failed workers: The MODC runtime detects
worker process failures in a decentralized manner, where each
worker may detect the failure of another. Two global data
structures provide the basic mechanism: a global frontier
counter and a worker vector containing a heartbeat counter
per worker to indicate the worker’s notion of the current fron-
tier. Each worker periodically reports its liveness status by
incrementing its heartbeat counter. The global frontier counter
is advanced when a sufficient number of workers reach the
new value. Because the worker vector is stored in a designated



void pagerank(Matrix* graph, Vector* vec, float alpha, int iter, int total_iter) {
if (iter != total_iter) {

for (auto r = 0; r < graph.num_rows; r += L0_partition_size)
createTask(spmv, graph, vec, alpha, iter, r, r + L0_partition_size);
createJob(pagerank, graph, vec, alpha, iter+1, total_iter);

}
}

void spmv(Matrix* graph, Vector* vec, float alpha, int iter, int rbegin, int rend) {
// recursive decomposition
if (rend - rbegin > L1_partition_size) {

for (auto r = rbegin; r < rend; r += L1_partition_size)
createTask(spmv, graph, vec, alpha, iter, r, r + L1_partition_size);

return;
}
// sparse-matrix vector multiplication
for (auto r = rbegin; r < rend; r++)

vec[iter+1][r] = alpha * vec[iter][r] + (1-alpha) * graph->MultiplyRow(r, vec[iter]);
}

Figure 2: PageRank implementation using MODC tasks.

location in disaggregated memory that other processes can in-
spect, any process can periodically check the heartbeat status
of another process. If an inspecting process observes that the
target process’ heartbeat counter is frozen for a configurable
time, then it pronounces the target process dead and takes
other corrective actions.

5 Case study: PageRank

We demonstrate the applicability of MODC’s resilient task
model to data analysis by implementing PageRank, a graph
analysis algorithm that iteratively computes a rank for each
vertex of a directed graph [39]. Figure 2 shows part of a
PageRank application that uses recursive decomposition to
parallelize the PageRank computation in two stages, where
each job corresponds to a PageRank iteration.

First, the top-level pagerank function performs multiple
iterations, where each iteration iter creates a fixed number of
tasks; each of these tasks invokes the spmv function. Pager-
ank then creates a new job corresponding to the next iteration
iter+ 1, which contains a pagerank task that will generate
the tasks for iteration iter + 1, as described above. Due to
the control dependency between jobs, iteration iter+1 won’t
begin until all of iteration iter’s tasks complete. Second, each
spmv task performs sparse matrix vector (SpMV) multipli-
cation over its assigned part of the adjacency matrix of the
graph and the current PageRank vector to generate new rank
values. Each spmv task may recursively (i.e., dynamically)
decompose work and create new spmv tasks until a target
partition size is reached.

5.1 Prototype and evaluation platform

Our evaluation goal is to understand the fault tolerance bene-
fits of MODC, as well as its overheads. We have implemented
a prototype of MODC’s resilient task programming model
and runtime system, including the components described in
the previous section. Our implementation builds on several

open source libraries, including lock-free data structures [7],
memory management [4, 5] and fabric atomics [1].

Our emulation platform for disaggregated memory is an
HPE Superdome X machine running Red Hat Enterprise
Linux 7.2 with 288 cores and 12 TB DRAM. Each of the
16 NUMA sockets has an E7-8890 v3 CPU with 18 cores
and 768 GB DRAM. We use Quartz [45] to emulate disaggre-
gated memory performance. Quartz emulates compute nodes
by binding each worker process to a NUMA socket, with
processes evenly distributed across the sockets. It emulates
disaggregated memory by binding a single instance of the
tmpfs in-memory file system to a remote NUMA socket used
exclusively for emulating disaggregated memory. This results
in 768 GB of disaggregated memory with remote latency of
400ns, as measured using a memory latency-sensitive pointer-
chasing microbenchmark. This latency is 3x slower than the
local latency and on par with previous research proposals on
rack-scale fabrics [38].

Our PageRank implementations use one-dimensional row
partitioning (also known as vertex partitioning): each task is
responsible for a set of rows and the non-zeroes within those
rows. Each experiment uses a 64M ×64M recursive matrix
(RMAT) [16] graph, and results are averaged over four runs.

5.2 Sensitivity to task size

We begin our analysis by exploring the sensitivity of the
MODC PageRank implementation to the task size. Figure 3
shows MODC execution time relative to the best execution
time (empirically determined to be 15,000 rows). This exper-
iment uses eight workers. MODC performs well for a wide
range of task sizes: performance is within 5% of the best for
tasks of 5000 rows to 100,000 rows, and within 17% of the
best for tasks of up to 8M rows. We use tasks of 15,000 rows
for our subsequent MODC experiments.
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5.3 Fault tolerance

We compare the resilience of the MODC implementation
of PageRank against the resilience of an MPI-based imple-
mentation with emulated checkpoints. In both cases, fourteen
workers execute PageRank’s iterative algorithm for 10 itera-
tions. We inject a failure by crashing one of the workers, and
let each implementation recover and continue execution. We
assume non-shrinking recovery for these experiments: a new
worker is instantiated upon a worker failure, to ensure that the
number of active workers remains constant.

The MPI and MODC implementations use the same data
structures and mmap data access methods, but use distinct
scheduling and recovery mechanisms. The MODC implemen-
tation dynamically decomposes the problem into jobs and
tasks. The failure is detected using MODC’s heartbeat mecha-
nism, and a new worker is activated from a hot standby spare.
The task being executed when the worker died, along with
any additional tasks in the failed worker’s queue, are stolen
for execution by one of the remaining workers.

The MPI implementation uses a bulk synchronous parallel
programming model, with barriers between iterations. Each
iteration’s work is statically partitioned among the workers,
with no work stealing. Partitioning assigns sets of 10,000 rows
(the empirically determined best MPI set size) to workers in a
round robin fashion. For fault tolerance, the MPI implementa-
tion uses checkpoints of the dense per-iteration output vector
(512 MiB) to the emulated disaggregated memory. Recovery
from a failure includes the time to read the checkpoint and
the time to re-run all of the iterations since the last check-
point. We assume a checkpoint interval of four iterations in
the analysis below.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

Ex
ec

ut
io

n 
tim

e 
(s

)

Failure injection iteration

MPI (checkpoints, failure) MPI (checkpoints, no failure)
MPI (no checkpoints) MODC (failure)
MODC (no failure)

Figure 4: Comparison of fault tolerance approaches

Figure 4 illustrates the overall execution time for 10 PageR-
ank iterations, with a failure injected at the iteration shown on
the x-axis. We measure execution with and without the failure.
With a failure injected, MODC only needs to restart the task
that was executing when the worker crashed. As a result, its
overall execution time with a failure is 23.3s, less than 1%

degradation from its failure-free execution. Execution time
for MPI with checkpointing depends on how soon the crash
occurs after the last checkpoint, ranging from 1.06X – 1.35X
of the failure-free execution time. Checkpoint-recovered ex-
ecution is slower than MODC resilient execution, ranging
from 19% slower than MODC (if the crash occurs just after
the checkpoint) to as much as 51% slower (if the crash occurs
just before the next checkpoint).

6 Discussion

Although it is reasonable to ask whether it is realistic to re-
quire programmers to structure applications as a set of idem-
potent tasks, this requirement is a common one among execu-
tion frameworks that target fault tolerance (e.g., CIEL [36],
Spark [47] and Ray [34]), as well as recent theoretical com-
putational models [12]. We believe this model matches the
needs of a large class of interesting parallel computations,
including single program multiple data (SPMD), bulk syn-
chronous parallel (BSP), and fork-join parallelism, as well as
iterative and recursive algorithms.

The granularity of computation that makes sense as an
idempotent task depends on the application’s logic. As ob-
served in Section 5.2, very small tasks incur noticeable de-
pendency tracking overheads, while very large tasks provide
limited ability to balance load through work stealing and may
increase recovery time (due to large task restart). MODC suc-
cessfully achieves near-optimal performance across a wide
range of task sizes between these two extremes.

To address the concern of large task recovery times, we con-
sidered allowing applications to provide application-specific
checkpointing, hidden from the MODC runtime. We found
this approach inelegant, though, because it requires that the
application-specific checkpoints are retained until the success-
ful completion of the task, which requires additional runtime
bookkeeping. Instead, we believe the cleanest way to avoid
rework due to the restart of large tasks is for applications to
use recursive decomposition to dynamically generate smaller
tasks, and then let the runtime’s dependency tracking handle
executing and restarting the finer-grained tasks.

7 Conclusion

Disaggregated memory presents an opportunity to rethink how
to support application resilience at rack scale. We proposed
MODC, a framework that lets programmers write resilient
applications using idempotent tasks. By placing the task de-
pendency graph and work queues in disaggregated memory,
MODC’s runtime can fail over computation from a failed
worker to a live worker in a decentralized manner. Our evalu-
ation results show that MODC’s fine-grained resilience can
outperform traditional checkpoint-based approaches in the
face of failures.
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