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Abstract
The prevailing approach toward building software in-
frastructure for disaggregated data centers is to develop
new virtual machine monitors or operating system ker-
nels that present the underlying hardware as a collec-
tion of logical servers. While this works well for back-
ward compatibility, we argue that it might be better to
invest in rebuilding the applications themselves so they
themselves are disaggregated along physical boundaries.
We propose nanoservices, a type of microservice that is
highly specialized for a single type of hardware resource,
and that applications be built from such nanoservices,
communicating over fast interconnects. This approach
keeps operating systems simple while taking better ad-
vantage of available hardware resources.

1 Introduction

A desire for improved utilization of hardware resources
is driving a trend toward disaggregated data centers. In-
stead of having racks filled with one-size-fits-all servers,
each containing a collection of CPUs, memory, storage,
NICs, GPUs, FPGA, and so on, the idea of a disaggre-
gated data center is to fill racks with pools of specialized
servers and connect these with a fast interconnect such as
RDMA [23], Gen-Z [3], or CXL [1]. So a rack will con-
tain pools of CPU servers, memory servers, NIC servers,
disk servers, GPU servers, and more. The software ap-
proach is to create logical servers specialized for the ap-
plications that run on them. However, a recent study [28]
shows that hiding underlying disaggregation can cause
significant performance degradation for unmodified ap-
plications. In this paper, we argue that creating logical
servers may not be the right one to best utilize disag-
gregated resources. Like [9] we argue that hardware re-
source disaggregation should be exposed to applications
rather than hidden from them. However, we go signif-
icantly further and propose that the applications them-
selves should be disaggregated as well.

We propose to build applications as a collection of
nanoservices. A nanoservice predominantly uses a sin-
gle type of resource. Today, a cloud application may be
structured as a set of microservices, but each microser-
vice typically requires a variety of resource types. For
example, NGINX [4] requires CPUs, memory, NICs, and
more. Even a microservice like memcached is a net-
worked service that requires powerful CPUs and NICs
to run well. We believe those microservices should be
further decomposed into nanoservices. For in-memory
caching, we need a version of memcached that uses
purely RDMA instead of TCP. A microservice like NG-
INX can be decomposed into a set of nanoservices, one
that deals with TCP connections, one that deals with
caching data, and one that deals with storage. The HTTP
logic of such a service can also be captured in a nanoser-
vice that mostly needs CPU resources. This nanoservice
should orchestrate the handling of HTTP requests, but it
should not process or cache the data. The data should
flow directly from the caching nanoservice to the TCP
nanoservice.

We believe that an application built from nanoservices
will better scale in various dimensions than applications
built from microservices can. Moreover, it will be eas-
ier to deploy disaggregated applications in a disaggre-
gated hardware environment, requiring no special oper-
ating system support. New resource types can be read-
ily incorporated. Nanoservices, because of their more
specialized nature, may also be easily reusable. The
TCP nanoservice can be used by any application that re-
quires interaction with remote clients (beyond RDMA).
Like memcached, a memory nanoservice can be used by
any application that requires caching. We consider Net-
work Function Virtualization a form of nanoservice that
we also want to integrate into our architecture. We want
to identify a collection of these reusable nanoservices to
simplify the development of disaggregated applications.

But we also need to design abstractions to help de-
velopers build applications from nanoservices. For ex-
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Figure 1: Server-centric v.s. disaggregated architecture.

ample, we will need scatter/gather operations so that we
can direct the TCP nanoservice to collect data from var-
ious nanoservices and send the result as a single mes-
sage to a remote client. Due to their distributed na-
ture, we need abstractions that have a clean failure model
and make building fault tolerant applications relatively
easy. Ideally we make it easy to re-architect existing
microservice-based applications into nanoservice-based
applications. And finally, we need to make sure that the
additional distribution does not come at a significant per-
formance penalty.

Because we do not attempt to hide the underlying dis-
aggregated hardware by presenting it as a collection of
logical servers, we do not believe that a nanoservice-
based architecture requires the development of new oper-
ating systems or virtual machine monitors. Existing op-
erating system kernels such as Linux are already highly
configurable. We can customize Linux kernels for dis-
aggregated hardware. If the applications are built from
nanoservices, then there is no need for special kernel
or VM mechanisms to support running those applica-
tions on disaggregated hardware. For performance, we
can utilize kernel by-pass techniques such as RDMA,
DPDK [2], SR-IOV [5], etc. We do, however, need ef-
ficient mechanisms to dynamically redistribute resources
among different applications as needed. This may re-
quire some changes to the operating system kernel.

2 Background

In a traditional data center, the de facto deployment unit
is a server, including processors, memory, and disks on
one chassis board. This is the so-called server-centric
(aggregated server) design. A disaggregated server de-
sign breaks monolithic servers into components of par-
ticular types and groups components of the same type
together into pools. Figure 1 shows the transformation
from a monolithic design to the disaggregated design.

Resource disaggregation provides several benefits
over a server-centric design. In a disaggregated environ-
ment, different hardware components can be upgraded
and maintained independently. Because of the physical

boundaries between monolithic servers, certain resources
may go underutilized. Disaggregated servers improve re-
source utilization because resources are globally acces-
sible. As new hardware such as accelerators, GPUs, and
specialized hardware, are quickly evolving and becom-
ing available in the data center, the loose coupling be-
tween hardware components in a disaggregated environ-
ment makes it heterogeneity-friendly.

However, a disaggregated architecture requires a fast
interconnect between resources to have comparable per-
formance to server-centric architectures. Emerging de-
vice interconnects such as RDMA, Gen-Z, and CXL, can
provide bandwidths of 100 Gbps and beyond [11,12,20].
As long as latencies are bounded by a few microsec-
onds, most data center applications can be run on a dis-
aggregated architecture without significant performance
loss [15]. Several hardware disaggregation designs have
been proposed [10, 14, 18].

On the software side, LegoOS [24] proposes a split
kernel operating system design to manage the underly-
ing disaggregated hardware components while providing
a POSIX interface to applications for backward compat-
ibility. To effectively utilize the memory pool, systems
such as [6–8, 16, 19, 21] either use new specialized hard-
ware or design new data structures to efficiently lever-
age remote memory. For disaggregated storage, indus-
try has already moved further in that direction [27]. [25]
proposes a way that leverages remote persistent mem-
ory such as Non-Volatile Memory (NVM) without re-
quiring a computing unit at the storage server. [9] pro-
poses exposing hardware disaggregation to applications
with features like explicit failure notifications and mem-
ory grant and steal. [22] points out the similarities be-
tween serverless computing and resource disaggregation
and proposes that both can be co-designed to shape the
future cloud.

In modern cloud applications, application business
logic is decomposed into loosely coupled distributed ser-
vices called microservices [13]. Microservices are de-
signed to be able to scale out easily from one instance
to many instances and are commonly deployed using ei-
ther virtual machines or containers. Unfortunately, this
requires complex logical servers when deployed in a dis-
aggregated architecture.

3 Disaggregated Applications

To a large extent, today’s cloud applications are already
highly modularized. Many new applications are built
using paradigms such as serverless computing and mi-
croservices. Doing so has various advantages. First, cus-
tomers who deploy the software need only pay for the
resources that they use. Second, the applications become
easily scalable, as more resources can be added as needed



(elasticity). Finally, because state and function are often
separated, it is relatively easy to recover from failures.

However, the applications are modularized and di-
vided into components along logical boundaries, not
physical boundaries based on resources. Thus each com-
ponent, such as a microservice or a lambda, may still
require a full complement of resources. The approach to
supporting disaggregated architecture therefore has been
to build operating systems or hypervisors that mostly
hide disaggregated hardware, presenting the disaggre-
gated hardware as a collection of virtual servers, each
appearing as a standard physical server. This is a useful
approach, as it provides backward compatibility for ex-
isting applications, yet allows each virtual server to be
specialized for a particular application process that runs
on the virtual server.

While useful, such virtual servers require a lot of
mechanisms to hide the underlying distribution of re-
sources. For example, projects like Infiniswap [16] and
Leap [19] provide efficient remote paging to hide mem-
ory disaggregation. This complicates the operating sys-
tems and/or virtual machine monitors while the level of
indirection makes them less efficient than if the applica-
tions could use underlying physical resources directly.

We can leverage the fact that people are already build-
ing modularized applications—we simply need to move
the boundaries to coincide with physical reality. We pro-
pose building applications from nanoservices that are
specialized for a particular hardware resource and scale
out with only that resource (Figure 2). The nanoservices
require a fast communication backbone such as RDMA.
Using this approach, we do not need to build operating
systems that try to re-aggregate disaggregated resources
into logical servers. Instead, we can use a conventional
operating system, perhaps optimized for a particular un-
derlying platform. Such platforms might include CPU
servers, GPU servers, TPU servers, FPGA servers, RAM
servers, NVM servers, SSD servers, NIC servers, and so
on. Each will have some customary CPU and memory
to be able to run a conventional operating system. For
instance, a smart NIC server may have many smart NICs
with relatively few CPUs and little memory required to
manage them. Applications access the other resources
either through system call interfaces or the kernel bypass
mechanisms, if available.

Broadly, we can classify nanoservices into two
classes: data-path and control-path nanoservices. Data-
path nanoservices focus on data processing and transfer,
such as TCP nanoservices and Memcached nanoservices.
Control-path nanoservices focus on application logic,
such as a load balancing nanoservice or a web server
nanoservice. Because nanoservices can scale indepen-
dently, we expect that applications based on nanoservices
can achieve better resources utilization than similar ap-
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Figure 2: Non-disaggregated and disaggregated applica-
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Figure 3: A traditional web server with microservices.
Interactions among microservices are not all shown here.

plications running on a logical server box.
Finally, we note that disaggregated applications are

a good fit for serverless applications. Because of their
smaller size, a serverless application based on nanoser-
vices can have a lower startup time. Furthermore,
a serverless application can be relatively easily trans-
formed into a disaggregated application by matching its
functions to nanoservices. Table 1 shows a comparison
between microservices and nanoservices.

Case Study 1: A Web Server
In a microservice architecture (Figure 3), a web server is
a monolithic application. Such an application requires
significant CPU, memory, and networking resources.
Just to be able to drive a TCP (or TLS) connection at



Microservice Nanoservice

Deployment unit A logical server, such as a virtual
machine or a container

A physical hardware platform with
a specialized resource

Modularity level
Coarse-grained, combining various
functionalities and using multiple

resource types

Fine-grained, focusing on
managing a single hardware

resource

Network stack Usually TCP/IP RDMA or optical switching
network

Table 1: Comparison between microservices and nanoservices.
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Figure 4: A disaggregated web server microservice with
nanoservices. Thick lines are RDMA links and dashed
rectangles represent microservice main logic code. In-
teractions among microservices are not all shown here.

10+Gbps often requires an entire core or more. A web
server also needs significant memory for caching. We
propose to split a web server up into multiple nanoser-
vices. One or more TCP nanoservices maintain connec-
tions to remote clients. Such nanoservices run on server
boxes that have many NICs and some CPUs to handle
the TCP and/or TLS connections. One or more memory
nanoservices are intended to cache data. For dynami-
cally generated web pages, the web server may also de-
ploy nanoservices on CPU or GPU servers. For serving
streaming video or audio content, there may be nanoser-
vices that run on storage servers.

One control-path nanoservice running on a CPU
server receives the HTTP request headers and orches-
trates the subsequent handling of the incoming requests.
This nanoservice is the brain of the operation. Ideally,
it does not process any user data—using scatter/gather
operations, user data is sent directly between the TCP
nanoservices and the nanoservices that maintain the data.

By splitting the web server into nanoservices, as
shown in Figure 4, we hope to be able to scale the web
server in new ways. A monolithic web server cannot han-
dle many client connections, but by separating connec-
tion management in a separate nanoservice, and possibly
instantiating multiple of these on different NIC servers,
we hope to be able to scale with the number of client

connections. Similarly, caching resources, streaming re-
sources, and so on can be individually scaled.

By keeping the “brain” nanoservice out of the criti-
cal path of data transfer, we hope we can avoid it from
becoming a bottleneck. But if it becomes a bottle-
neck, traditional load balancing techniques allow us to
run multiple brain nanoservices. The multiple brains
can share their caching nanoservices and other content-
serving nanoservices, rather than each being a mono-
lithic web server in its own right without the advantage
of a shared cache.

Case Study 2: A Database
For many applications, the database is an essential com-
ponent that maintains the state of the application. It is
often sharded for scale. Each database forms a microser-
vice and requires a multitude of resources, including
CPU, memory, and storage, and increasingly also spe-
cialized hardware such as FPGAs or GPUs. However, we
know how to build shared-nothing distributed database
architectures that are highly modularized. We believe
those components are already suitable to run as nanoser-
vices. The components include storage nanoservices,
query processing nanoservices, and logging nanoser-
vices. Other components may include nanoservices spe-
cialized in query optimization, metadata management,
map/reduce operations, and so on.

Examples of Reusable Nanoservices
We believe that we can develop a variety of nanoservices
that can be highly reusable. Below we will highlight a
few examples.

• A cache nanoservice. Such a service would be sim-
ilar to memcached in functionality. memcached
is highly popular in microservice-based architec-
tures. However, memcached deployments live in
user space and are accessed over TCP connections.
This results in significant access overhead. Instead,
we will support memcached-like nanoservices that
are directly accessible over RDMA. They would run



on servers that have lots of memory but only modest
CPU support to run an operating system.

• A persistent key/value store nanoservice. Such a
service would provide simple persistent storage.
The server that runs the service would have signifi-
cant storage, but does not need much in the way of
CPU or memory resources. We intend to support
different kinds of underlying persistent storage. For
NVM, we can use pDPM [26] as a starting point.

• When it comes to a full storage stack, designs such
as Pocket [17] already go a long way toward what
we have in mind.

• A TCP/TLS nanoservice. These nanoservices main-
tain connections to remote clients, directing traffic
as orchestrated by control-path nanoservices. Each
application owns a set of remote connections. Then,
proxy functionality and load balancing would be
achieved by moving a remote connection from one
connection set to another. The server running such
services could have many smart NICs and some
CPUs with a small amount of fast local memory.

• Machine learning training and inference nanoser-
vices. Many machine learning applications are al-
ready divided into GPU code and CPU code.

4 Challenges

Developing disaggregated applications and running them
efficiently in a disaggregated architecture will come with
significant challenges. We list some of these challenges
below.

One approach to developing disaggregated applica-
tions will be to convert existing microservice-based ap-
plications. Currently, most microservices assume to run
in a normal server environment with access to a vari-
ety of resources. Even the libraries that application pro-
cesses use make such assumptions. For example, popular
programming environments such as Python and Node.js
support HTTP processing, but assume that they also have
direct access to the TCP connections. While it is possible
to create remote sockets over RDMA, this would cause
user data to move repeatedly between different nanoser-
vices, an inefficient proposal. We will design new scat-
ter/gather abstractions to avoid such unnecessary copy-
ing, but they will likely require changes to existing li-
braries and other software infrastructure.

Experience demonstrates that it is possible to achieve
good performance with microservice-based applications.
By further decomposing applications into nanoservices,
we add additional communication requirements. While
we are shifting such communication to fast interconnects

such as RDMA or optical switching fabrics, we must be
careful not to introduce communication bottlenecks.

Another potential challenge is security of a
nanoservice-based architecture. Because commu-
nication has to have ultra-low latency, standard
encryption-based security mechanisms may impose
too much overhead. Also, nanoservices on the same
server may use kernel bypass for good performance,
preventing the kernel from mediating access. We plan to
use hardware-based isolation mechanisms (for example,
SR-IOV [5]) as much as possible to maintain good
performance while also providing adequate security.
Given that nanoservices will be relatively small and
will be running on kernels that can be specialized and
minimized to only run the software necessary for the
resources available on the server, we also hope to gain
security from a smaller TCB.

Another concern is portability, we argue that appli-
cations should be disaggregated into nanoservices based
on the resources they use, and the resulting nanoservices
could become highly specialized, perhaps even depend-
ing on specific brands of resources. This could make it
hard to move applications from one environment to an-
other. Abstraction remains an important tool to achieve
portability. With the right abstractions in place, there
could be different specialized implementations of the
same nanoservice, providing good performance for the
same application running in different environments.

5 Conclusion

To take full advantage of disaggregated data centers, we
propose to forego an approach based on logical servers
in favor of an approach based on nanoservices, each spe-
cialized for a particular type of resource. We believe
that applications based on nanoservices can be more eas-
ily scaled in various dimensions (based on available re-
sources) and take advantage of new resource types. To-
day programmers are already writing code that special-
izes for specific resource types such as GPUs and net-
work processors—we simply propose to extend this to
all resource types. We hope to develop a set of reusable
nanoservices and communication paradigms to make it
relatively easy to develop performant, robust, and secure
nanoservice-based applications. We are also looking for
approaches to simplify conversion of microservice-based
applications to nanoservice-based ones.

For backward compatibility, it may still be useful to
also develop logical servers that all but hide hardware
disaggregation. But new applications can already take
advantage of hardware disaggregation with operating
systems available today, configured to take full advan-
tage of the hardware servers on which they are deployed.



References
[1] Compute Express Link. https://www.

computeexpresslink.org/, 4 2021.

[2] Data Plane Development Kit. https://www.dpdk.org/, 3
2021.

[3] Gen-Z Consortium. https://genzconsortium.org/, 4
2021.

[4] NGINX. https://www.nginx.com/, 3 2021.

[5] Single Root I/O Virtualization and Sharing Specification Re-
vision 1.1. https://pcisig.com/specifications/
iov/, 3 2021.

[6] AGUILERA, M. K., AMIT, N., CALCIU, I., DEGUILLARD, X.,
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