
Improving Disaggregated System Evaluation with
Modular End-to-End Simulation

Bin Gao* Hejing Li† Jialin Li* Antoine Kaufmann†

National University of Singapore* Max Planck Institute for Software Systems†

Abstract
Research on disaggregated architectures and the systems
built on them is challenging to evaluate. Such work
by definition involves radical changes to performance
critical system components (e.g., memory subsystem)
with complex impact on overall system performance at
scales ranging from racks to complete data centers. We
examine the challenges faced in evaluation for work in this
space, along with the inherent trade-offs chosen.

We then describe modular full system simulation with
SimBricks as a means of evaluating disaggregated systems
end-to-end. Simulation in SimBricks offers the required
flexibility to modify and re-combine components, while
maintaining control over performance across components.
Looking forward, we discuss future steps to further im-
prove and streamline disaggregated system simulation.

1 Introduction
Resource disaggregation holds the promise of improving
resource utilization, reducing cost, independent scaling,
and finer-grain fault isolation. This conceptually simple
approach opens up a broad design space for systems
disaggregating resources at different levels and with
different approaches, often requiring new or modified
hardware components. As a result, much of the work in this
domain cannot be easily evaluated in a realistic physical
testbed; prior work often compromise by using emulation,
resulting in numerous caveats about the functionality and
performance characteristics actually measured.

When a full system “end-to-end” evaluation in a physi-
cal testbed is out of reach, we argue that the next best thing
is often a full system evaluation in simulation. The alterna-
tive of emulating functionality in software or with FPGAs
or a non-full-system evaluation all risk missing essential
hard-to-predict behaviors due to interactions between
components or their relative performance characteristics.
Unfortunately full system evaluation with existing
simulators often requires an unreasonable amount of effort,
or are outright incapable of fully simulating such systems.

In this paper we instead advocate for using modular
full system simulation, combining multiple simulator in-
stances for different hardware components. We use the
SimBricks [28] simulation framework for network systems
as a starting point. SimBricks defines fixed interfaces for
different simulator types to enable modular composition,

and includes mechanisms for scalable communication and
synchronization of simulations with thousands of compo-
nents. We discuss necessary changes for simulating a broad
range of disaggregated system designs, including adding
new component interfaces for memory disaggregation, and
missing component simulators. Finally, we present prelim-
inary results demonstrating the feasibility of this approach.

2 Evaluation Challenges
Multiple compounding factors make work on disaggre-
gated systems challenging to evaluate.

Radical changes to hardware. First off, work in
this space proposes a wide range of radical changes to
today’s standard server hardware architectures. Memory
disaggregation, typically requires fundamental changes
to the memory subsystem. Examples include only using
local DRAM into cache [40], moving MMU out of proces-
sor [40, 15], or inspecting and interposing on cache coher-
ence state [7]. Computational accelerators are similarly
being decoupled from compute, by enabling accelerators
to directly communicate over the network [11] and even
with each other [5]. Even I/O devices such as network
cards are re-imagined, e.g., by integrating them directly
into DRAM [2] or the processor [17]. Hardware for such
new proposals is by definition not available off the shelf.

Complex effects on full system. These radical changes,
and disaggregation more generally, also increase both
the number of cross-component interactions and their
impact on overall system behavior, and introduces new
opportunities for things to go wrong. For example, in a
non-disaggregated system local execution is not affected
by behavior on other nodes (barring controlled interaction
through I/O devices). In a system with memory disaggre-
gation, some memory accesses will travel across the shared
network and may be processed in shared memory modules.
And even minor disruptions in one component might
cascade forward to other components, e.g., a memory
access delayed by network congestion may in turn stall
the processor and thereby delay OS timer interrupts
preventing timely context switches. But such interactions
only emerge if evaluating a complete end-to-end system.

Increased system scale. Similarly, the required scale
for even minimal experimental setups that still result in
meaningful results, is also significantly larger. Scale might

1

Resource System Cur. HW Emu. Sim.

Memory [25, 30, 14, 3] OS
[9, 39, 45] App
[36] FPGA
[40] OS
[15] FPGA
[22] Partial
[23] Full
[33] VMM Full

Storage [40, 49] OS
Accelerators [43, 12, 11, 24] FPGA

Tab. 1: Overview of work on resource disaggregation
systems and the evaluation approaches employed.

range from a few machines [33] to racks [20, 22, 36, 41, 27]
or whole clusters in data centers [48, 25]. Disaggregation
by design is about flexibly sharing resources, and
determining behavior and performance under realistic
sharing conditions are usually the main evaluation goals.

In summary, we often require new hardware, but should
evaluate end-to-end, and require testbeds of realistic scale.

3 Approaches to Evaluation
This struggle for meaningful evaluation is apparent in
published work in this space. We now examine different
approaches to evaluation the research literature has taken,
and classify them into three categories for discussion.
Tab. 1 provides an overview.

3.1 Designing for Today’s Hardware
The first category is conceptually easiest to evaluate: work
targeting already available hardware architectures. Here,
evaluation in a complete physical testbed is typically fea-
sible, although the required scale may still be a challenge
when special hardware is required. A broad range of work
leverages existing host and networking hardware and
implements resource disaggregation in the operating sys-
tem [25, 30, 14, 3] or in an application runtime [9, 39, 45].
Other work leverages existing programmable switches
in the network to offload coordination and management
tasks for resource disaggregation into the network [26, 46].
Finally, some work designs systems to specifically
leverage FPGAs [36, 43, 12] where reconfigurable fabrics
are a better fit than general purpose processors.

3.2 Emulation
The second category is work that proposes new hardware
but uses emulation with currently available hardware as
a means of evaluation. Fidelity of the emulation heavily
depends on the specific use-case, but generally emulation
is easier if the proposed hardware design is closer to
currently available hardware.

Software Emulation. Emulating new functionality in
software is the most common instance of this strategy. For
example, LegoOS [40] emulates a hardware-managed
cache for disaggregated memory accessed over the
network, through the system’s virtual memory support.
MIND [26] leverages Intel Pin [31] for dynamic binary
instrumentation to emulate accesses to remote memory
in unmodified applications. In both cases this enables
full-system evaluation with real applications. However,
such emulation typically comes at a significant perfor-
mance cost, in terms of operation latency, throughput, and
resource utilization. For example, a software page-fault
handler initiating a network transfer takes orders of
magnitude longer compared to the same operation
in dedicated hardware, and also consumes processor
cycles otherwise available to the workload. Emulation
thus enables functional evaluation, but performance
measurements typically only offer a lower bound and slow
emulation can easily more than absorb any performance
improvements offered by the system under evaluation.

FPGAs. When proposing new hardware components,
FPGAs can serve as a more realistic evaluation platform
compared to software emulation. For example, Clio [15]
proposes an SoC with a specialized ASIC hardware
pipeline for memory nodes, and leverages a Xilinx
SoC+FPGA board as an emulation for evaluation. Unlike
with systems specifically designed for FPGAs (cf. §3.1),
using FPGAs for evaluating ASICs is an emulation. Per-
formance properties, such as operating frequencies power
consumption, and resource utilization, vary substantially
between ASIC and FPGA. As a result, most papers using
FPGAs in this way include discussions of various perfor-
mance limitations due to emulation limits, e.g., Clio [15]
incurs high memory latencies and low DRAM capacity
because of limitations with the particular FPGA board.

FPGA emulation is particularly useful for standalone
components with standard interfaces, such as new PCIe
devices. It, however, falls short when emulating changes
to existing processors, e.g., modifying an Intel Xeon’s
MMU. Research platforms such as Enzian [8] aim to
mitigate this through generous resource provisioning,
e.g., by including high DRAM capacity, large FPGAs,
and ample I/O connectivity. But even then, performance
differences remain, and many designs will still not fit
because of timing or resource limitations.

3.3 Simulation
Finally, when functionality beyond existing hardware is
required and emulation is not feasible, the last resort is
typically simulation. The key advantage of simulation
compared to emulation is the increased flexibility and
complete control over timing. This comes at a cost of often
painfully slow execution, e.g., soNUMA [33] reports a

2

few thousand instructions per second, and the need to
first implement and validate a simulator with the desired
functionality. In spite of this, especially when proposing
modified or new hardware architectures, simulation is
often the only means for a rigorous evaluation.

Individual components. Limiting simulation to individ-
ual components is a common strategy to reduce complexity
and simulation time. For example, dReDBox [1, 22] uses
Intel Pin to record application memory traces in emulation,
and then replay these through a simulator of just the
memory interconnect and memory controller [4, 35].
Unfortunately, “piecemeal” simulations inherently do
not capture full system behavior. For example, longer
memory latency due to memory disaggregation would
lead to changes in memory accesses, e.g., because thread
switches occur at different points or delayed network
transfers cascade to delayed future requests.

Full system. Full system simulation aims to simulate the
complete system, including processor, memory subsystem,
devices, networks, and the complete software stack of
OS, libraries, and applications. soNUMA [33] uses the
Flexus [47] simulator for simulating systems with NUMA
interconnects extending across machines. Kommareddy
et al. [23] use the structural simulator toolkit (SST) [38]
from the HPC community to simulate 8 compute nodes
connected to a central memory node. Finally, nanoPU [17]
uses the FPGA-accelerated Firesim [21] simulator for
simulating the complete RTL for an SoC architecture
optimized for low-latency networking. For all three
examples, simulation enables evaluation of the complete
system, despite radical changes to hardware.

However, full system simulations typically require
significant effort and computational resources. All three of
these examples involve significant (one-off) modifications
to different simulation frameworks. Further, these simu-
lations require ample computational resources, be it hours
of simulation on processors for Flexus and SST, or many
FPGAs for Firesim. Finally, such one-off modifications
also require long validation process against baselines and
physical testbeds to ensure meaningful results.

We argue that simulation is and will remain an essential
component for work on resource disaggregation systems
and architectures. Combining general trends in the post-
Moore era [16] with work in a nascent area, new hardware
proposals and systems leveraging them will remain
prevalent. The combination of evaluation challenges we
outlined (cf. §2), imply that an end-to-end evaluation is
necessary but challenging without a physical testbed and
at the necessary scale. Prior work has demonstrated that
emulation, in software or FPGAs, even when feasible
often comes with limitations. Simulations, especially of
the full system, can avoid these shortcomings by providing
necessary flexibility and control over relative performance

of system components. In the rest of this paper, we discuss
how to address the challenges to full system simulation
of disaggregated systems.

4 Modular Full System Simulation
Modular full system simulation with the SimBricks
framework for simulating network systems [28], can also
enable end-to-end evaluation of disaggregated systems.

4.1 SimBricks Summary
SimBricks assembles simulated full system testbeds from
instances of simulators for different system components.
Components in SimBricks correspond to natural bound-
aries in physical systems and they interconnect through the
corresponding interfaces: PCIe between host simulators
and devices such as NICs or NVMe SSDs, and Ethernet
links between NICs, switches and network-attached
accelerators. For each type of interconnect, SimBricks
defines a message interface that conforms to the standard.
This enables SimBricks to provide strong modularity: In-
tegrating a component simulator only requires developing
an adapter that implements the message interface, while
the rest of the simulator is kept unmodified.

Component simulator instances in SimBricks run as
independent processes that communicate through message
passing over optimized shared memory queues. This
loose coupling eases integration effort, as components are
treated as black-boxes that communicate through asyn-
chronous messages. It also allows component simulators
to run on different processor cores in parallel, enabling
SimBricks to scale up to larger simulations, and to scale
out using distributed simulations. To ensure accurate
evaluation results, SimBricks implements a time synchro-
nization protocol that guarantees simulation timing and
scales to hundreds or even thousands of components.

SimBricks scales to simulate 1000 hosts in distributed
simulation, and can run unmodified OS, applications, and
even RTL hardware designs and drivers. The open-source
framework [42] already integrates a range of popular
simulators, including gem5 [6], qemu [37], ns-3 [34],
omnet++ [44], and Intel’s Tofino Simulator [19]. The
modular approach reduces effort for adapting a simulator
configuration for a new use-case, as known-working
configurations for unmodified components can simply
be copied in. The authors also speculate that modular
simulation configuration may reduce validation effort.

As such SimBricks provides a starting point for full sys-
tem simulation of disaggregated systems and architectures.

4.2 Alternative Simulators
Before diving into necessary changes to SimBricks,
we discuss simulators previously used for full system
simulation of disaggregated systems. The structural

3

simulation toolkit (SST) [38] also composes modular
component simulators. Because of SST’s super computing
background, it misses important components for data
center systems. More importantly, disaggregated system
work leveraging SST [23] has reported issues scaling past 8
simulated nodes without drastically increasing simulation
time. soNUMA [33] leveraged a modified version of the
Flexus simulator [47], but a slow-down of six orders of
magnitude. Finally, nanoPU [17] leveraged Firesim [21]
for FPGA-accelerated simulation of modified RISC-V
hosts. Firesim requires a full RTL implementation of the
simulated system, (except for the network), drastically
limiting what can be easily simulated.

4.3 Support for Disaggregated Systems
While SimBricks can already simulate disaggregated
systems that only require regular Linux network connec-
tivity, the majority of work in the space needs additional
functionality not yet in SimBricks. Changes range
from adding new component simulators to adding new
interfaces and abstractions in SimBricks.

4.3.1 Component Simulators

RDMA NIC. Much work in resource disaggrega-
tion [40, 26, 39, 45] relies on RDMA for network
communication.SimBricks does not include RDMA NIC
simulators. While much of this work targets current
hardware and can be evaluated in physical testbeds,
follow-up work with hardware changes should still be able
to compare to it in an apples-to-apples setting. Thus in on-
going work, we are developing a component simulator for
the Intel e810, a data-center 100 Gbps Ethernet NIC with
available register-level data sheet and open source drivers.

Scalable compute node simulator. SimBricks includes
simulators like gem5 and qemu that can simulate
multi-cores. However, these are sequential simulators (in
configurations that model timing), resulting in simulation
times increasing proportionally with the number of
simulated processors. To address this, we plan to explore
and integrate other simulators that leverage parallel
execution, such as Intel/Windriver Simics [10].

System-specific components. In §5, we extend Sim-
Bricks with components for simulating specific systems.

4.3.2 Interfaces

We propose to extend SimBricks with new interfaces
for disaggregated components for work on memory
disaggregation. This could be implemented in individual
simulators, e.g., by adding a network-attached memory
controller to gem5 directly. However, adding dedicated
interfaces greatly increases modularity and flexibility for
re-combining different component simulators.

Processor Core
L1 Data L1 Instr.

L2 Cache
L3 Cache PCIe

DRAM
Memory Adapter

SimBricks

gem5

Fig. 1: SimBricks memory adapter in gem5 system.

gem5
Host 1

gem5
Host 2

gem5
Host 3

netmem
Memory B

netmem
Memory AmemNIC

 PCIe Memory Ethernet

Switch
Tofino Sim.memNIC

i40e NIC

memNIC

Memory Access

b) MMIO

 Access Flows

Fig. 2: SimBricks simulation of a disaggregated system
with 3 compute, 2 memory, and 2 accelerator nodes.

Memory interface. We have implemented a memory in-
terface in SimBricks along with an adapter in gem5 to con-
nect components directly to the memory bus. This interface
asynchronously carries read and write requests from gem5
to a memory component simulator and completions back.
In gem5, the adapter implements the gem5 memory inter-
face, and can thus be flexibly integrated into various gem5
configurations. Fig. 1 shows an example configuration.

Cache interface. As future work, we plan to introduce an
interface for connecting components to caches including
coherence. This requires extending the memory protocol
with additional control messages for coherence (e.g.,
snoops). The key challenge is to find a balance of complex-
ity and features. The protocol should cover a broad range
of use-cases, allow for integration with different compute
node simulators such as gem5 or Simics, and make it as
easy to implement components using the interface.

CXL. CXL [13, 29, 32] has emerged in industry as
the interconnect of choice for disaggregated hardware
components. CXL extends PCIe with functionality for
devices to efficiently expose device memory to the host
(CXL.mem) and maintaining coherent on-device caches
(CXL.caches). While commercial CXL hardware,
including processors, mainboards, FPGAs, are becoming
available [18], simulation still provides much greater
flexibility for experimentation and extensions. As such,
we plan to extend SimBricks with a CXL interface and
corresponding adapters for compute node simulators.

4

5 Case-Study

5.1 OS Support for Disaggregation
LegoOS [40] is a new operating system that specifically
targets disaggregated data centers. LegoOS proposes three
concrete types of disaggregated resources and their re-
spective monitors: a pComponent for processor hardware,
a mComponent for memory nodes, and a sComponent
for disaggregated storage nodes. Each component has
a dedicated network-attached hardware controller. The
pComponent contains CPU cores, caches, and limited
amount of physical memory to both store kernel memory
and serve as an extended cache (ExCache). Virtual
memory translation and memory management are done
by the mComponents. The ExCache on pComponents is
managed by software – when the ExCache experiences a
cache miss, the pComponent controller (CPU processors)
issues a memory access request to the responsible
mComponent over the network. The mComponent
controller serves memory requests, performs address
translation, and allocates/deallocates memory regions.

Unfortunately, the disaggregated hardware components
proposed by LegoOS are not yet available. LegoOS there-
fore resorts to emulation by running all components on reg-
ular servers: pComponents are emulated by restricting the
size of physical memory; a few processor cores are used to
emulate controllers on mComponents and sComponents.

SimBricks offers a solution to properly evaluate a pro-
posal like LegoOS. As shown in Fig. 1 and Fig. 2, we can
simulate a pComponent in LegoOS using a combination
of a host simulator like gem5 and a hardware network con-
troller connected to the memory bus. Unlike the software
emulation in LegoOS, SimBricks can accurately simulate
a hardware memory adaptor directly connected to the L3
cache on the memory bus. Emulation on existing hardware
limits LegoOS to process ExCache misses in software.
With SimBricks, a researcher can explore a wider range
options, for example, to handle ExCache misses directly
in the adapter hardware, which may improve cache miss
latency. The benefit of SimBricks-style simulation is
more evident on mComponents. Instead of processing
memory requests on CPU cores, SimBricks can simulate a
hardware controller that is tightly coupled with component
memory. This simulation setup closely matches the orig-
inal disaggregated hardware proposal, which gives more
realistic performance results. It also enables vast design
space exploration – hardware design of the controller,
latency and bandwidth between the controller and local
memory — and test their impact on LegoOS performance.

5.2 In-Network Support for Disaggregation
One shortcoming of many memory disaggregation solu-
tions, including LegoOS, is the lack of support for elastic

scaling of processes to multiple compute nodes. The
core of this limitation is that sharing writeable memory
across compute nodes necessitate cache coherence,
which can incur significant overhead. To address this
issue, MIND [26] proposes to move memory and cache
coherence management to the network fabric itself.
Specifically, in a rack-scale deployment, the control
plane of the ToR programmable switch is responsible
for memory and coherence directory allocation, while
coherence directory lookup, address translation, and
coherence invalidation are done in the switch data plane.

SimBricks is fully capable of accurately simulating
the MIND setup. SimBricks has already integrated
a cycle-accurate Intel Tofino programmable switch
model. As shown in Fig. 2, a set of memory nodes and
compute nodes (combination of a host simulator and
a memory NIC simulator) can be connected through
a single Tofino simulator. The original MIND P4 and
controller implementation can directly run in the Tofino
model without any modification. Moreover, similar to
our LegoOS discussion, SimBricks enables more realistic
hardware simulation of the disaggregated compute and
memory nodes – MIND still employs monolithic Linux
servers to emulate both types of hardware components.

5.3 Preliminary Evaluation
To demonstrate that SimBricks can evaluate such systems,
we have implemented a preliminary prototype, using
simplified replicas of the required components as shown in
Fig. 2. First off, we have implemented a network memory
interface (memNIC), that connects to gem5 through our
new SimBricks memory interface, and forwards accesses
to the configured memory range, as UDP network packets
on its outgoing SimBricks Ethernet port. Next, using the
Intel Tofino simulator (as well as a simpler behavioral
switch), we implement memory address translation and
steering of requests to the corresponding memory node.
We then implement a simple network-attached hardware
memory node simulator processes our UDP network
memory requests and responds to them. On the host
side, we implement a simple Linux driver to register this
memory region through the memory hotplug API into a
separate (emulated) NUMA node.

We then run the sysbench memory benchmark
pinned to that NUMA node for one second, and measure
the simulation time, including Linux bootup and shutdown.
To evaluate sensitivity of the simulation time to different
latencies for the memory bus (which directly affect
synchronization overhead), we measure with latencies of
20, 100, and 500 ns. The complete simulation takes 74, 77,
and 78 min respectively, indicating that synchronization
is not the bottleneck (likely gem5’s instruction execution
is). Even with a larger setup of 20 simulated hosts
and 5 memory nodes, and 20 ns memory bus latency,

5

synchronization only increases to 114 min. Based on
experiences reported in the SimBricks paper, we expect
that at least half of the increase is due to thermal throttling
of the processor as more cores are used.

6 Looking Forward
We now discuss remaining challenges and promising
approaches to address them.

6.1 Open Challenges
The scale and diverse hardware in disaggregated systems
give rise to challenges for modular end-to-end simulations.

Long simulation times. Many simulators incur high
simulation times — taking hours to simulate few seconds.
For many systems this severely limits what applications
can feasibly be simulated. Many disaggregated systems re-
quire long initialization and warm-up periods before reach-
ing steady state, incurring prohibitive simulation times.

High resource requirements. To make matters worse,
SimBricks simulations require at least one core per
component simulator instance for the full duration of the
simulation. Due to busy-polled shared-memory queues,
multiplexing multiple simulator processes onto a core,
incurs excessive context switching and SimBricks time
synchronization delays.

Validation. Finally, robust simulation results require vali-
dation of the simulation configuration and implementation,
typically by comparing results against ground truth results
from physical testbeds. However, ground truth results
for novel disaggregated system architectures are typically
hard or impossible to obtain, or even approximate through
comparison to other similar physical testbeds.

6.2 Promising Directions
We now outline ideas toward addressing these challenges.

Decomposing component simulators. One way to ac-
celerate slow and sequential component simulators is to
parallelize. Preliminary results [28] suggest decomposing
along natural boundaries and connecting and synchroniz-
ing the components through SimBricks mechanisms can
effectively parallelize simulators. We are currently apply-
ing this to multi-core simulations in gem5 and network sim-
ulators, to address common bottlenecks in our simulations.

Hardware accelerated simulation. To further reduce
simulation times, FireSim [21] leverages FPGAs to
accelerate hardware RTL system simulations combined
with software network simulations. First, we suggest
integrating FireSim into SimBricks, by adapting it
to SimBricks communication and synchronization
mechanisms. Next, we expect that software simulations

can also be significantly accelerated through hardware
acceleration for parallelism and synchronization.

Mixed fidelity simulations. Many disaggregated
systems simulation do not require the same level of
detail throughout all components. For example, often we
measure performance of applications with background
tasks also using system components. Modular simulation
can mix simulators with varying fidelity for different
components, e.g. by reducing detail for the simulated
background nodes while maintaining equivalent (visible)
interactions with other system components. While
simulation time is still bottlenecked by the slow detailed
simulators for the components we measure, this reduces
computational resources for the background nodes.

Composing validation. Finally, we expect modular
simulations can also reduce validation effort. The open
question is under which circumstances connecting individ-
ually validated simulator configurations together results in
overall valid behavior. If this is possible, simulations could
be assembled from pieces of pre-validated components.
SimBricks accurately synchronizes and connects compo-
nents, but errors in different components may accumulate.
We propose empirical measurements with a broad range
of disaggregated systems under different configurations.
Additionally, we propose to design tools for detailed vis-
ibility into full system performance of systems simulated
in SimBricks, taking inspiration from distributed tracing.

7 Conclusions
Modular simulation for disaggregated systems has the
potential to significantly improve quality of our evalua-
tions, while also providing additional flexibility and often
reducing effort. SimBricks extended with a few additional
interfaces and component quickly enables a host of work
to be simulated without undue effort. Once researchers
start adopting SimBricks for different disaggregated
systems, the modular approach will enable follow-up work
to easily reuse or adapt components and configurations.

SimBricks, including the extensions discussed
in this paper, is open source and available at
https://simbricks.github.io.

Acknowledgments
We would like to thank the anonymous reviewers for their
comments and feedback. We also thank Jonas Kaufmann
for his help with running experiments, and for developing
the QEMU SimBricks memory protocol adapter. Jialin Li
is supported by a MOE Tier 1 grant T1 251RES2104, an
ODPRT grant A-0008089-00-00, and a Huawei industry
grant A-8000079-00-00.

6

https://simbricks.github.io

References
[1] Nikolaos Alachiotis, Andreas Andronikakis, Orion

Papadakis, Dimitris Theodoropoulos, Dionisios
Pnevmatikatos, Dimitris Syrivelis, Andrea Reale,
Kostas Katrinis, George Zervas, Vaibhawa Mishra,
et al. dReDBox: A disaggregated architectural per-
spective for data centers. In Hardware Accelerators
in Data Centers, pages 35–56. Springer, 2019.

[2] Mohammad Alian and Nam Sung Kim. NetDIMM:
Low-latency near-memory network interface archi-
tecture. In 52nd Annual ACM/IEEE International
Symposium on Microarchitecture, MICRO, 2019.

[3] Emmanuel Amaro, Christopher Branner-Augmon,
Zhihong Luo, Amy Ousterhout, Marcos K. Aguilera,
Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker.
Can far memory improve job throughput? In 15th
ACM European Conference on Computer Systems,
EuroSys, 2020.

[4] Andreas E. Andronikakis. Memory system evalu-
ation for disaggregated cloud data centers. Diploma
thesis, Technical University of Crete, 2017.

[5] Nils Asmussen, Michael Roitzsch, and Hermann
Härtig. M³x: Autonomous accelerators via Context-
Enabled Fast-Path communication. In 2019 USENIX
Annual Technical Conference, ATC, 2019.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A.
Wood. The Gem5 simulator. SIGARCH Computer
Architecture News, 39(2):1–7, August 2011.

[7] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya
Kashyap, Hasan Al Maruf, Onur Mutlu, and
Aasheesh Kolli. Rethinking software runtimes for
disaggregated memory. In 26nd International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, 2021.

[8] David Cock, Abishek Ramdas, Daniel Schwyn,
Michael Giardino, Adam Turowski, Zhenhao He,
Nora Hossle, Dario Korolija, Melissa Licciardello,
Kristina Martsenko, Reto Achermann, Gustavo
Alonso, and Timothy Roscoe. Enzian: An open,
general, CPU/FPGA platform for systems software
research. In 27th International Conference on
Architectural Support for Programming Languages
and Operating Systems, ASPLOS, 2022.

[9] Aleksandar Dragojević, Dushyanth Narayanan,
Orion Hodson, and Miguel Castro. FaRM: Fast
remote memory. In 11th USENIX Symposium on
Networked Systems Design and Implementation,
NSDI, 2014.

[10] Jakob Engblom. Simics 5 is here — more paralllel
than ever. https://blogs.windriver.
com/rwoolley/2015/06/simics-5-is-
here-more-parallel-than-ever/.

[11] Haggai Eran, Maxim Fudim, Gabi Malka, Gal
Shalom, Noam Cohen, Amit Hermony, Dotan
Levi, Liran Liss, and Mark Silberstein. FlexDriver:
A network driver for your accelerator. In 27th
International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS, 2022.

[12] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka,
and Mark Silberstein. NICA: An infrastructure for
inline acceleration of network applications. In 2019
USENIX Annual Technical Conference, ATC, 2019.

[13] Donghyun Gouk, Sangwon Lee, Miryeong
Kwon, and Myoungsoo Jung. Direct access,high-
performance memory disaggregation with directcxl.
In 2022 USENIX Annual Technical Conference,
ATC, 2022.

[14] Juncheng Gu, Youngmoon Lee, Yiwen Zhang,
Mosharaf Chowdhury, and Kang G. Shin. Efficient
memory disaggregation with Infiniswap. In 14th
USENIX Symposium on Networked Systems Design
and Implementation, NSDI, 2017.

[15] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong
Huang, and Yiying Zhang. Clio: A hardware-
software co-designed disaggregated memory system.
In 27th International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS, 2022.

[16] John L. Hennessy and David A. Patterson. A
new golden age for computer architecture. ACM
Transactions on Computer Systems, 62(2):48–60,
February 2019.

[17] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo
Jepsen, Muhammad Shahbaz, Changhoon Kim,
and Nick McKeown. The nanoPU: A nanosecond
network stack for datacenters. In 15th USENIX
Symposium on Operating Systems Design and
Implementation, OSDI, 2021.

[18] Intel Corporation. Intel fpga compute express link
(cxl). https://www.intel.sg/content/

7

https://blogs.windriver.com/rwoolley/2015/06/simics-5-is-here-more-parallel-than-ever/
https://blogs.windriver.com/rwoolley/2015/06/simics-5-is-here-more-parallel-than-ever/
https://blogs.windriver.com/rwoolley/2015/06/simics-5-is-here-more-parallel-than-ever/
https://www.intel.sg/content/www/xa/en/products/details/fpga/intellectual-property/interface-protocols/cxl-ip.html

www/xa/en/products/details/fpga/
intellectual-property/interface-
protocols/cxl-ip.html, 2022. Retrieved
Oct 6, 2022.

[19] Intel Corporation. Intel Tofino series pro-
grammable switch ASIC. https://www.intel.
com/content/www/us/en/products/
network-io/programmable-ethernet-
switch/tofino-series.html, 2022.
Retrieved Feb 2, 2022.

[20] Changyeon Jo, Hyunik Kim, Hexiang Geng, and
Bernhard Egger. RackMem: A tailored caching
layer for rack scale computing. In 2020 ACM
International Conference on Parallel Architectures
and Compilation Techniques, PACT, 2020.

[21] Sagar Karandikar, Howard Mao, Donggyu Kim,
David Biancolin, Alon Amid, Dayeol Lee, Nathan
Pemberton, Emmanuel Amaro, Colin Schmidt,
Aditya Chopra, Qijing Huang, Kyle Kovacs,
Borivoje Nikolic, Randy Katz, Jonathan Bachrach,
and Krste Asanović. FireSim: FPGA-accelerated
cycle-exact scale-out system simulation in the public
cloud. In 45th Annual International Symposium on
Computer Architecture, ISCA, 2018.

[22] K. Katrinis, D. Syrivelis, D. Pnevmatikatos,
G. Zervas, D. Theodoropoulos, I. Koutsopoulos,
K. Hasharoni, D. Raho, C. Pinto, F. Espina, S. Lopez-
Buedo, Q. Chen, M. Nemirovsky, D. Roca, H. Klos,
and T. Berends. Rack-scale disaggregated cloud data
centers: The DReDBox project vision. In 2016 An-
nual Design Automation Conference, DATE, 2016.

[23] Vamsee Reddy Kommareddy, Simon David Ham-
mond, Clayton Hughes, Ahmad Samih, and Amro
Awad. Page migration support for disaggregated
non-volatile memories. In 2019 International
Symposium on Memory Systems, MEMSYS, 2019.

[24] Youngeun Kwon and Minsoo Rhu. A disaggregated
memory system for deep learning. IEEE Micro,
39(5):82–90, 2019.

[25] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman
Souhlal, Neha Agarwal, Radoslaw Burny, Shakeel
Butt, Jichuan Chang, Ashwin Chaugule, Nan
Deng, Junaid Shahid, Greg Thelen, Kamil Adam
Yurtsever, Yu Zhao, and Parthasarathy Ranganathan.
Software-defined far memory in warehouse-scale
computers. In 24nd International Conference on
Architectural Support for Programming Languages
and Operating Systems, ASPLOS, 2019.

[26] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag
Khandelwal, Lin Zhong, and Abhishek Bhattachar-
jee. MIND: In-network memory management for
disaggregated data centers. In 28th ACM Symposium
on Operating Systems Principles, SOSP, 2021.

[27] Sergey Legtchenko, Hugh Williams, Kaveh Razavi,
Austin Donnelly, Richard Black, Andrew Douglas,
Nathanael Cheriere, Daniel Fryer, Kai Mast,
Angela Demke Brown, Ana Klimovic, Andy Slowey,
and Antony Rowstron. Understanding rack-scale dis-
aggregated storage. In 9th Workshop on Hot Topics
in Storage and File Systems, HotStorage, 2017.

[28] Hejing Li, Jialin Li, and Antoine Kaufmann. Sim-
Bricks: End-to-end network system evaluation with
modular simulation. In 2022 ACM SIGCOMM Con-
ference on Data Communication, SIGCOMM, 2022.

[29] Huaicheng Li, Daniel S Berger, Stanko Novakovic,
Lisa Hsu, Dan Ernst, Pantea Zardoshti, Monish Shah,
Ishwar Agarwal, Mark Hill, Marcus Fontoura, et al.
First-generation memory disaggregation for cloud
platforms. arXiv preprint arXiv:2203.00241, 2022.

[30] Shuang Liang, Ranjit Noronha, and Dhabaleswar K.
Panda. Swapping to remote memory over Infini-
Band: An approach using a high performance
network block device. In 2005 IEEE International
Conference on Cluster Computing, 2005.

[31] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with
dynamic instrumentation. In 2005 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI, 2005.

[32] Pankaj Mehra and Tom Coughlin. Taming memory
with disaggregation. Computer, 55(9):94–98, 2022.

[33] Stanko Novakovic, Alexandros Daglis, Edouard
Bugnion, Babak Falsafi, and Boris Grot. Scale-out
NUMA. In 19th International Conference on
Architectural Support for Programming Languages
and Operating Systems, ASPLOS, 2014.

[34] nsnam. ns-3 — a discrete-event network simulator for
internet systems. https://www.nsnam.org/,
2022. Retrieved Feb 2, 2022.

[35] Orion Papadakis. Memory system evaluation of
disaggregated high performance parallel systems.
Diploma thesis, Technical University of Crete, 2017.

8

https://www.intel.sg/content/www/xa/en/products/details/fpga/intellectual-property/interface-protocols/cxl-ip.html
https://www.intel.sg/content/www/xa/en/products/details/fpga/intellectual-property/interface-protocols/cxl-ip.html
https://www.intel.sg/content/www/xa/en/products/details/fpga/intellectual-property/interface-protocols/cxl-ip.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.nsnam.org/

[36] Christian Pinto, Dimitris Syrivelis, Michele Gazzetti,
Panos Koutsovasilis, Andrea Reale, Kostas Katrinis,
and H. Peter Hofstee. ThymesisFlow: A software-
defined, HW/SW co-designed interconnect stack
for rack-scale memory disaggregation. In 53nd
Annual ACM/IEEE International Symposium on
Microarchitecture, MICRO, 2020.

[37] QEMU Authors. QEMU – the FAST! processor
emulator. https://www.qemu.org/, 2022.
Retrieved Feb 2, 2022.

[38] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett,
C. Kersey, R. Oldfield, M. Weston, R. Risen, J. Cook,
P. Rosenfeld, E. Cooper-Balis, and B. Jacob. The
structural simulation toolkit. ACM SIGMETRICS
Performance Evaluation Review, 38(4):37–42,
March 2011.

[39] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K.
Aguilera, and Adam Belay. AIFM: High-
performance, application-integrated far memory.
In 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI, 2020.

[40] Yizhou Shan, Yutong Huang, Yilun Chen, and
Yiying Zhang. LegoOS: A disseminated, distributed
OS for hardware resource disaggregation. In 13th
USENIX Symposium on Operating Systems Design
and Implementation, OSDI, 2018.

[41] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani,
Paolo Costa, Ki Suh Lee, Han Wang, Rachit
Agarwal, and Hakim Weatherspoon. Shoal: A
network architecture for disaggregated racks. In
16th USENIX Symposium on Networked Systems
Design and Implementation, NSDI, 2019.

[42] SimBricks. https://github.com/
simbricks.

[43] Maroun Tork, Lina Maudlej, and Mark Silberstein.
Lynx: A SmartNIC-driven accelerator-centric
architecture for network servers. In 25nd Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS, 2020.

[44] András Varga and Rudolf Hornig. An overview
of the OMNeT++ simulation environment. In 1st
International Conference on Simulation Tools and
Techniques for Communications, Networks and
Systems & Workshops, Simutools, 2008.

[45] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li,
Zhenyuan Ruan, Khanh Nguyen, Michael D. Bond,
Ravi Netravali, Miryung Kim, and Guoqing Harry

Xu. Semeru: A memory-disaggregated managed
runtime. In 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI, 2020.

[46] Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin
Chen, and Jiwu Shu. Concordia: Distributed
shared memory with in-network cache coherence.
In 19th USENIX Conference on File and Storage
Technologies, FAST, 2021.

[47] Thomas F Wenisch, Roland E Wunderlich, Michael
Ferdman, Anastassia Ailamaki, Babak Falsafi,
and James C Hoe. SimFlex: statistical sampling
of computer system simulation. IEEE Micro,
26(4):18–31, August 2006.

[48] Qiao Zhang, Guo Yu, Chuanxiong Guo, Yingnong
Dang, Nick Swanson, Xinsheng Yang, Randolph
Yao, Murali Chintalapati, Arvind Krishnamurthy,
and Thomas Anderson. Deepview: Virtual disk
failure diagnosis and pattern detection for Azure.
In 15th USENIX Symposium on Networked Systems
Design and Implementation, NSDI, 2018.

[49] Qizhen Zhang, Xinyi Chen, Sidharth Sankhe, Zhilei
Zheng, Ke Zhong, Sebastian Angel, Ang Chen,
Vincent Liu, and Boon Thau Loo. Optimizing data-
intensive systems in disaggregated data centers with
teleport. In 2022 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD, 2022.

9

https://www.qemu.org/
https://github.com/simbricks
https://github.com/simbricks

	Introduction
	Evaluation Challenges
	Approaches to Evaluation
	Designing for Today's Hardware
	Emulation
	Simulation

	Modular Full System Simulation
	SimBricks Summary
	Alternative Simulators
	Support for Disaggregated Systems
	Component Simulators
	Interfaces

	Case-Study
	OS Support for Disaggregation
	In-Network Support for Disaggregation
	Preliminary Evaluation

	Looking Forward
	Open Challenges
	Promising Directions

	Conclusions

