
Practical Memory Disaggregation using
Compute Express Link

Donghyun Gouk, Sangwon Lee, Miryeong Kwon, Myoungsoo Jung
Computer Architecture and Memory Systems Laboratory,
Korea Advanced Institute of Science and Technology (KAIST)

http://camelab.org

Abstract—New cache coherent interconnects such as CXL have
recently attracted great attention thanks to their excellent hard-
ware heterogeneity management and resource disaggregation
capabilities. Even though there is yet no real product or platform
integrating CXL into memory disaggregation, it is expected to
make memory resources practically and efficiently disaggregated
much better than ever before.

We propose directly accessible memory disaggregation, DI-
RECTCXL that directly connects a host processor complex
and remote memory resources over CXL’s memory protocol
(CXL.mem). As there is no operating system that supports CXL,
we also offer CXL software runtime that allows users to utilize the
underlying disaggregated memory resources via sheer load/store
instructions. Since DIRECTCXL does not require any data copies
between the host memory and remote memory, it can expose the
true performance of memory disaggregation to the users.

I. MEMORY DISAGGREGATION AND ITS CHALLENGE

Memory disaggregation has attracted great attention thanks
to its high memory utilization, transparent elasticity, and
resource management efficiency [2, 14, 15]. Many studies have
explored various software and hardware approaches to realize
memory disaggregation and put significant efforts into making
it practical in large-scale systems.

We can broadly classify the existing memory disaggrega-
tion runtimes into two different approaches based on how
they manage data between a host and memory server(s): i)
page-based and ii) object-based. The page-based approach
[1, 3, 9, 10, 13, 18, 24] utilizes virtual memory techniques
to use disaggregated memory without a code change. It swaps
page cache data residing on the host’s local DRAMs from/to
the remote memory systems over a network in cases of a
page fault. On the other hand, the object-based approach
handles disaggregated memory access from a remote-side
using their own database such as a key-value store instead of
leveraging the virtual memory systems [7, 8, 11, 17, 19, 23].
This approach can address the challenges imposed by address
translation (e.g., page faults, context switching, and write
amplification), but it requires significant source-level modi-
fications and interface changes.

While aforementioned studies try to implement high-
performance memory disaggregation system, they rely on
network-based data exchange which can significantly de-
teriorate the performance of memory disaggregation. The
network-based data exchange (e.g., RDMA) requires host
software intervention and multiple memory copy operations

Fig. 1: DIRECTCXL’s connection method.

for controlling network interface cards and DMA operations,
respectively. Also, the network-based data exchange requires
protocol/interface changes between network (e.g., InfiniBand)
and host interface (e.g., PCIe). Our evaluation shows that the
software intervention and copy operations consume 66% of
end-to-end network-based data exchange (Section III).

II. DIRECT ACCESSIBLE MEMORY DISAGGREGATION

Recently, a new concept of open industry standard inter-
connect, compute express link (CXL [4]), is introduced which
offering high-performance connectivity among multiple host
processors, hardware accelerators, and I/O devices [6]. CXL is
originally designed to achieve the excellency of heterogeneity
management across different processor complexes, but both
industry and academia anticipate its cache coherence ability
can improve memory utilization and alleviate memory over-
provisioning with low latency [12, 20, 21].

We demonstrate DIRECTCXL, direct accessible disaggre-
gated memory that connects host processor complex and
remote memory resources over CXL’s memory protocol
(CXL.mem). As CXL.mem allows the host computing re-
sources directly access the underlying memory of CXL devices
through PCIe buses (FlexBus), we design and implement CXL
devices as pure passive modules, each being able to have many
DRAM DIMMs with its own hardware controllers.
Integrating CXL devices into system memory. Figure 1
shows how CXL devices’ internal DRAMs are mapped (ex-
posed) to a host’s memory space over CXL. The host CPU’s
system bus contains one or more CXL root ports (RPs), which
connect one or more CXL devices as endpoint (EP) devices.
Our host-side kernel driver first enumerates CXL devices by
querying the size of their base address register (BAR) and their
internal memory, called host-managed device memory (HDM),
through PCIe transactions. Based on the retrieved sizes, the
kernel driver maps BAR and HDM in the host’s reserved
system memory space and lets the underlying CXL devices

1



Fig. 2: Software runtime/driver of
DIRECTCXL.

64 12
8

25
6

51
2 1K 2K 4K

0
4k
8k

12k
16k

Br
ea

kd
ow

n
(c

yc
le

s)

Payload (bytes)

Library 
C

opy 
M

em
ory 

N
etw

ork 

64 12
8

25
6

51
2 1K 2K 4K

0

1k

2k

Br
ea

kd
ow

n
(c

yc
le

s)

Payload (bytes)

M
em

ory 
PC

Ie 
C

PU
 C

ache 

(a) RDMA. (b) CXL.
Fig. 3: Performance comparison of load latency.

DLRM
MemDB

0.0

0.5

1.0

N
or

m
al

iz
ed

Ex
ec

. T
im

e

Swap KVS DirectCXL 

M
IS

BF
S

C
C BC

0.0

0.5

1.0

N
or

m
al

iz
ed

Ex
ec

. T
im

e

Fig. 4: Real workload performance.

know where their BAR and HDM (base addresses) are mapped
in the host’s system memory. When the host CPU accesses
an HDM system memory through load/store instruction, the
request is delivered to the corresponding RP, and the RP
converts the requests to a CXL flit. Since HDM is mapped
to a different location of the system memory, the memory
address space of HDM is different from that of EP’s internal
DRAMs. Thus, the CXL controller translates the incoming
addresses by simply deducting HDM’s base address from them
and issues the translated request to the underlying DRAM
controllers. The results are returned to the host via a CXL
switch and FlexBus. Note that, since HDM accesses have no
software intervention or memory data copies, DIRECTCXL
can expose the CXL device’s memory resources to the host
with low access latency.
Software Runtime for DIRECTCXL. While applications
running on the host can directly access the CXL device
by referring to HDM’s memory space, it requires software
runtime/driver to manage the underlying CXL devices and
expose their HDM in the application’s memory space. We thus
support DIRECTCXL runtime that simply splits the address
space of HDM into multiple segments, called cxl-namespace.
DIRECTCXL runtime then allows the applications to access
each CXL-namespace as memory-mapped files (mmap).

Figure 2 shows the software stack of our runtime and how
the application can use the disaggregated memory through
cxl-namespaces. When a CXL device is detected (at a PCIe
enumeration time), DIRECTCXL driver creates an entry device
(e.g., /dev/directcxl) to allow users to manage a cxl-
namespace via ioctl. If users ask a cxl-namespace, the driver
checks a (physically) contiguous address space on an HDM
by referring to its HDM segment table whose entry includes
a segment’s offset, size, and reference count (recording how
many cxl-namespaces use this segment). Once DIRECTCXL
driver allocates a segment based on the user request, it creates
a device for mmap (e.g., /dev/cxl-ns0) and updates the
segment table. The user application can then map the cxl-
namespace to its process virtual memory space using mmap.

III. EVALUATIONS AND CONCLUSION

We built all DIRECTCXL IPs from the ground and configure
many customized FPGA add-in-cards and high-performance
datacenter accelerator cards to implement CXL network topol-
ogy for memory disaggregation. As yet there is no processor
architecture supporting CXL, we also build our own in-house
host processor using RISC-V ISAs, which employs four out-
of-order cores whose last-level cache (LLC) implements CXL

RP. Our in-house softcore processors work at 100MHz while
CXL and PCIe IPs (RP, EP, and Switch) operate at 250MHz.
Microbenchmark. Figure 3a decomposes RDMA latency
into essential hardware (Memory and Network), software
(Library), and data copy latencies (Copy). Library is
the primary performance bottleneck in RDMA when the size
of payloads is smaller than 1KB (53.3%, on average). As the
payloads increase, Copy gets longer and reaches 37.3% of
total execution time. This is because users must copy all their
data into RNIC’s MR, which takes extra overhead in RDMA.
The Library and Copy consumes 46.2% and 19.8% of
end-to-end latency, on average, respectively. In contrast, as
shown in Figure 3b, the breakdown analysis for DirectCXL
shows a completely different story. As DIRECTCXL allows
host to access remote memory resources using sheer load/store
instruction, there is neither software nor data copy overhead.
Real workloads. For the real workload evaluation, we used
DLRM [16], in-memory database (MemDB [11]) and four
graph analysis from Ligra [22]. Figure 4 shows the execution
latency of Swap (FastSwap [2]), KVS (HERD [11]), and
DirectCXL. For Ligra, we exclude KVS because Ligra’s
graph processing is not compatible with a key-value structure.

As shown in the figure, Swap shows worst performance as
it does not understand workload’s data access characteristics.
KVS can reduce the latency of Swap as it can fine-control
where the data is placed and removes the overhead imposed
by page-based memory management. However, it has two
major issues: First, it requires significant modification of the
application’s source codes, which is often impossible (e.g.,
MIS, BFS, CC, BC). Second, KVS requires heavy computation
such as hashing at the memory node, which increases mone-
tary costs. In contrast, DirectCXL without having a source
modification and remote-side resource exhibits 3× and 2.2×
better performance than Swap and even KVS, respectively.

We propose DIRECTCXL that connects host and remote
memory resources over CXL’s memory protocol. The results of
our real system evaluation show that DIRECTCXL exhibits 3×
better performance than conventional memory disaggregation,
on average, for real-world workloads.

IV. FUTURE WORK AND ACKNOWLEDGEMENT

We are extending both software and hardware parts of this
work to: i) Integrating remote memory exposed by CXL to
NUMA subsystem, so that user can use CXL memory without
source code modification. ii) Extending our in-house CXL IPs
towards CXL 3.0, supporting new features such as dynamic

2



capacity [5], and iii) SoC silicon fabrication. Myoungsoo Jung
is the corresponding author (mj@camelab.org).

V. DEMO AND ORIGINAL PUBLICATION

Demo video. https://youtu.be/6a5NSMH-7hY
Original publication. D. Gouk, S. Lee, M. Kwon and M.
Jung. Direct Access, High-Performance Memory Disaggrega-
tion with DIRECTCXL, in USENIX ATC 2022. https://www.
usenix.org/system/files/atc22-gouk.pdf

REFERENCES

[1] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,
J. Gandhi, S. Novakovic, A. Ramanathan, P. Subrah-
manyam, L. Suresh, K. Tati et al., “Remote regions: a
simple abstraction for remote memory,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18), 2018,
pp. 775–787.

[2] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout,
M. K. Aguilera, A. Panda, S. Ratnasamy, and S. Shenker,
“Can far memory improve job throughput?” in Proceed-
ings of the Fifteenth European Conference on Computer
Systems, 2020, pp. 1–16.

[3] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A.
Maruf, O. Mutlu, and A. Kolli, “Rethinking software
runtimes for disaggregated memory,” in Proceedings of
the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2021, pp. 79–92.

[4] CXL Consortium, “Compute Express Link Specification
Revision 2.0.”

[5] ——, “Compute Express Link Specification Revision
3.0.”

[6] ——, “Compute Express Link™ 2.0 White Paper,”
https://www.computeexpresslink.org/_files/ugd/0c1418_
14c5283e7f3e40f9b2955c7d0f60bebe.pdf.

[7] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson,
“Farm: Fast remote memory,” in 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), 2014, pp. 401–414.

[8] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Ren-
zelmann, A. Shamis, A. Badam, and M. Castro, “No
compromises: Distributed transactions with consistency,
availability, and performance,” in Proceedings of the 25th
symposium on operating systems principles, 2015, pp.
54–70.

[9] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin,
“Efficient memory disaggregation with infiniswap,” in
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), 2017, pp. 649–667.

[10] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, “Clio:
A hardware-software co-designed disaggregated memory
system,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2022, pp. 417–433.

[11] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using
rdma efficiently for key-value services,” in Proceedings

of the 2014 ACM Conference on SIGCOMM, 2014, pp.
295–306.

[12] P. Kennedy, “Compute Express Link or CXL What
it is and Examples,” https://www.servethehome.com/
compute-express-link-or-cxl-what-it-is-and-examples/.

[13] S.-s. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and
A. Bhattacharjee, “Mind: In-network memory manage-
ment for disaggregated data centers,” in Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems
Principles, 2021, pp. 488–504.

[14] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang,
P. Ranganathan, and T. F. Wenisch, “System-level impli-
cations of disaggregated memory,” in IEEE International
Symposium on High-Performance Comp Architecture.
IEEE, 2012, pp. 1–12.

[15] L. Liu, W. Cao, S. Sahin, Q. Zhang, J. Bae, and Y. Wu,
“Memory disaggregation: Research problems and oppor-
tunities,” in 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2019,
pp. 1664–1673.

[16] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sun-
daraman, J. Park, X. Wang, U. Gupta, C. Wu, A. G.
Azzolini, D. Dzhulgakov, A. Mallevich, I. Cherniavskii,
Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko,
S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong,
and M. Smelyanskiy, “Deep learning recommendation
model for personalization and recommendation systems,”
CoRR, vol. abs/1906.00091, 2019. [Online]. Available:
https://arxiv.org/abs/1906.00091

[17] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Ka-
han, and M. Oskin, “Latency-tolerant software distributed
shared memory,” in 2015 USENIX Annual Technical
Conference (USENIX ATC 15), 2015, pp. 291–305.

[18] C. Pinto, D. Syrivelis, M. Gazzetti, P. Koutsovasilis,
A. Reale, K. Katrinis, and H. P. Hofstee, “Thymesisflow:
a software-defined, hw/sw co-designed interconnect stack
for rack-scale memory disaggregation,” in 2020 53rd
Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 2020, pp. 868–880.

[19] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Be-
lay, “Aifm: High-performance, application-integrated far
memory,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), 2020,
pp. 315–332.

[20] D. D. Sharma, “CXL: Coherency, Memory,
and I/O Semantics on PCIe Infrastructure,”
https://www.electronicdesign.com/technologies/
embedded-revolution/article/21162617/cxl-coherency-
memory-and-io-semantics-on-pcie-infrastructure.

[21] N. Shenoy, “A Milestone in Moving Data,” https://
newsroom.intel.com/editorials/milestone-moving-data.

[22] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph
processing framework for shared memory,” in Proceed-
ings of the 18th ACM SIGPLAN symposium on Principles
and practice of parallel programming, 2013, pp. 135–
146.

3

mailto:mj@camelab.org
https://youtu.be/6a5NSMH-7hY
https://www.usenix.org/system/files/atc22-gouk.pdf
https://www.usenix.org/system/files/atc22-gouk.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://www.servethehome.com/compute-express-link-or-cxl-what-it-is-and-examples/
https://www.servethehome.com/compute-express-link-or-cxl-what-it-is-and-examples/
https://arxiv.org/abs/1906.00091
https://www.electronicdesign.com/technologies/embedded-revolution/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.electronicdesign.com/technologies/embedded-revolution/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.electronicdesign.com/technologies/embedded-revolution/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://newsroom.intel.com/editorials/milestone-moving-data
https://newsroom.intel.com/editorials/milestone-moving-data


[23] S.-Y. Tsai, Y. Shan, and Y. Zhang, “Disaggregating
persistent memory and controlling them remotely: An
exploration of passive disaggregated key-value stores,”
in 2020 USENIX Annual Technical Conference (USENIX
ATC 20), 2020, pp. 33–48.

[24] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen,
M. D. Bond, R. Netravali, M. Kim, and G. H. Xu,
“Semeru: A memory-disaggregated managed runtime,” in
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), 2020, pp. 261–280.

4


	Memory Disaggregation and Its Challenge
	Direct Accessible Memory Disaggregation
	Evaluations and Conclusion
	Future Work and Acknowledgement
	Demo and Original Publication

