
JITServer: Disaggregated Caching JIT
Compiler for the JVM in the Cloud

Alexey Khrabrov
University of Toronto

Marius Pirvu
IBM

Vijay Sundaresan
IBM

Eyal de Lara
University of Toronto

Just-in-time compilation in the JVM

● At application build time:
○ Java/Scala/etc. source code → portable Java bytecodes

● At runtime:
○ Bytecode interpreter (slow)

■ Collects profiling data
○ Dynamic JIT compilation in the background

■ Only “hot” code paths
■ Rely on profiling data to optimize

○ Result: native code executing directly on CPU

2

● Compiler CPU overhead
○ Up to 50% of total CPU time during start/warm-up
○ Application competes with the JIT for CPU

● Memory footprint of compiler data structures
○ Transient spikes during warm-up: up to 100s of MBs

● Have to overprovision resources
○ More CPU to maintain QoS despite JIT activity
○ Extra memory that goes unused after warm-up

● Lower application density in the cloud

JIT compilation performance issues

3

● Decouple JIT from the JVM, move to separate (remote) process
○ Software disaggregation - similar to e.g. microservices

● Reduces memory usage
○ Spikes from multiple client JVMs unlikely to align at the server

● JIT doesn’t steal CPU cycles from application - better QoS in small containers
● Enables independent autoscaling of compilation resources

Promising approach: JIT compiler disaggregation

4

Client JVM
JIT compiler

Client JVM
JIT compiler

…

JITServer

JIT
compiler

JVM
JIT compiler

JVM
JIT compiler

…

disaggregation

Remote JIT drawbacks

● JIT overhead only moved around
○ At the expense of communication overhead

● Can result in higher overall CPU usage
● Each compilation takes more CPU time

○ Networking and data serialization overheads
○ Also more wall-clock time due to latency

5

local compilation

Time

JVM Client

Server

remote compilation

runtime
info

requests

Time

Time

● A lot of code shared between multiple JVMs in cloud workloads
○ E.g. multiple instances of the same application for autoscaling

● Can reuse JIT-compiled code in multiple JVMs
○ Cache at compiler server, send to clients running the same code

● Goal: reduce overall CPU usage by amortizing JIT cost over many JVMs

Our approach to improve remote JIT

6

compilation request

native code

runtime info requests/responses
JITServer

JIT compiler

…

Client JVM

JIT compiler

Client JVM

JIT compiler

Compiled
code cache

compilation request

cached native code

● JIT-compiled code breaks if used as is in a different JVM
● Pointers to class metadata, other compiled methods, etc.

○ Addresses depend on the order of class loads, JIT compilations, etc.
● Assumptions: e.g. “class C currently has a single known subclass”

○ Can break even for the same application due to dynamic class loading

Challenges in reusing JIT-compiled code

7

JIT-compiled X.m1()

… native code …

Class Y … Class X … JIT-compiled Y.m2() ……JVM 2:

Class X … Class Y … JIT-compiled Y.m2() ……JVM 1:

virtual address space

● JITServer stores cached JIT-compiled methods in serialized format
○ Add serialization records: describe how to “fix” the code in another JVM

● Relocation records to update addresses in compiled code
○ More difficult than e.g. relocating compiled C code
○ Cannot simply identify everything by symbol name

● Validation records to verify compiler assumptions
● Main building block: identifying classes equivalent at runtime across JVMs

○ Can express all relocations and validations in terms of Java classes
○ Same Java class definition can result in distinct classes at runtime

Our solution: serialize JIT-compiled code

8

Identifying runtime classes across JVMs

● Assign globally unique ID to each runtime class
○ “RAMClass” in OpenJ9 - our target JVM

● Store enough info to lookup and verify the class in any JVM
○ Fully-qualified class name
○ Secure hashes (e.g. SHA-256) of immutable class metadata

■ “ROMClass” in OpenJ9; includes method bytecodes
■ For each class and interface in the inheritance chain

○ Class loader: identify by name of 1st loaded class
■ Heuristic that works well in practice

9

abstract class A {
 abstract void m1();
}
class B extends A {
 void m1() { ... }
}
class C {
 static void m2(A o) {

 o.m1();// inlined as B.m1()
 }
}

Serialized JIT-compiled method example

10

● Relocating devirtualization guard in C.m2()
○ Validation: check that class B is the same
○ Relocation: update the ramclass_B

address in the cmp instruction
● Assume all classes loaded by bootstrap

class loader: 1st loaded class is Object
● Serialization records to identify class B

○ “B”, SHA(ROMClass B), “java/lang/Object”
○ “A”, SHA(ROMClass A), “java/lang/Object”
○ “java/lang/Object”, SHA(ROMClass Object),

“java/lang/Object”Compiled method C.m2():
 ...
 cmp rax, ramclass_B; rax contains RAMClass of o
 jne slow_path
 ... ; inlined body of B.m1()
.slow_path: ... ; virtual call to o.m1()

● Not a goal to cache everything
● Relocatable code can be up to ~10% slower

○ Limits possible optimizations
○ Lower peak throughput for long-running JVMs

● Particularly “hot” methods compiled with more optimizations are not cached
● JITServer cache hit rate is ~70-95% in practice
● Faster JVM start and reduced CPU usage without hurting peak performance

What methods to cache

11

● Benchmarks: 3 web applications
○ 1. AcmeAir - airline reservation system ← presenting this one, similar results for others
○ 2. DayTrader - stock trading platform
○ 3. Spring PetClinic - animal hospital information system
○ (More representative of cloud workloads than e.g. Java SPEC benchmarks)

● 11 machines with 16 CPU cores each connected with 10 Gbit/s Ethernet
● Application instances run in Docker containers

○ Default size: 1 CPU core, 1 GB memory (roughly AWS EC2 t2.micro instance)
● Single JITServer instance runs on separate machine

Performance evaluation

12

Application performance: start time

● Start time: from starting the JVM until ready to serve requests
● Varying container sizes

○ XS: 0.5 CPU, 512 MB; S: 1 CPU, 1 GB; M: 2 CPUs, 2GB; L: 4 CPUs, 4 GB
● Up to 58% reduction with caching, only up to 40% without

13

● Warm-up time: from applying load until reaching 90% of peak throughput
○ Workload configured to saturate application throughput

● Up to 87% reduction with caching, only up to 80% without

Application performance: warm-up time

14

● Many JVM instances (up to 64 concurrently) started/stopped over 1 hour
● CPU cost: total CPU time (all JVMs + JITServer) per request served
● Up to 21% increase with remote JIT without caching
● Up to 77% reduction with caching

Overall system efficiency: CPU cost

15

● Peak total memory usage (RSS) of all concurrent JVMs + JITServer
● Up to 62% reduction compared to local JIT
● Result: higher application density

Overall system efficiency: memory usage

16

● Warm-up time (normalized) with increasing number of clients
○ Remote JIT is effective if warm-up is faster than with local JIT
○ All clients start simultaneously; cache is initially empty

● Caching allows serving more clients using the same resources
○ Compilation cost is effectively amortized over multiple clients

JITServer scalability

17

● Warm-up time with increasing (simulated) network latency
○ Bandwidth has limited effect - communication pattern is latency-bound (small message pairs)

● Caching allows ~2x higher latency
○ ~54% fewer messages per compilation
○ Very good performance for typical datacenter latencies (100s of microseconds)

Effect of network latency

18

● Integration with serverless/FaaS frameworks (e.g. OpenWhisk)
○ Main prerequisite: automatic sizing and scaling of JITServer resources
○ Requires multiple relatively “small” JITServer instances
○ Need to share and preserve the cache to avoid JITServer “cold starts”
○ Using persistent snapshots to reduce synchronization and support scaling down to zero

● Prefetching cached compiled methods
● Caching and reusing profiling data

○ Reuse indirect JIT compilation effort for methods that are not cached (up to 30%)
○ Profiling data is expensive: need to interpret methods for 1000s of invocations

Current and future work

19

● JIT compilation overheads make JVM inefficient in the cloud
● Remote JIT compilation is a promising approach

○ Reduces memory usage, but increases overall CPU usage
● We make remote JIT efficient by reusing compiled code in multiple JVMs
● Novel mechanism for serializing dynamically compiled code
● Open source JITServer implementation in the Eclipse OpenJ9 JVM

○ https://github.com/eclipse-openj9/openj9
● JITServer significantly improves performance

○ Reduces CPU and memory usage, start and warm-up time
○ Increases application density in the cloud

Summary

20

https://github.com/eclipse-openj9/openj9

Questions?

21

● Static AOT (ahead-of-time) compilation, e.g. GraalVM Native Image
○ Only works for “static” subset of Java under closed world assumption
○ Lower peak throughput: lack of real profiling data; no recompilation

● Caching JIT-compiled code, e.g. SCC (shared classes cache) in OpenJ9
○ Not all code is cached, still need JIT compiler with its memory overhead
○ Pre-populated cache at build time

■ Added complexity for application developer; larger container images
○ Dynamically populated cache shared between JVMs on local host

■ Forces co-location of instances of same application on same machines
● Checkpointing or reusing “warm” JVMs

○ Similar issues: complexity; forced co-location; idle footprint

Limitations of other approaches

22

● 15-20 years ago in embedded/mobile computing
○ Main motivation: not enough resources for JIT on device
○ Overall resource usage not considered
○ All designs assume that each remote compilation is single request-reply

■ All information used by compiler known before sending request
■ Not feasible in a modern JVM with a complex JIT

● Recent (Dec 2021): Azul Cloud Native Compiler
○ Proprietary; very limited design information
○ Seems to focus on giving the JIT more CPU and memory, not on overall resource usage

Existing work on remote JIT

23

Other challenges in remote JIT compilation

● Need to request JVM runtime info on demand
○ Hard to determine in advance what exactly compiler will need

● Aggressive caching to reduce number of messages
● Class metadata and class hierarchy information

○ Need to invalidate caches when necessary to ensure correctness
○ Careful synchronization with class loading/unloading/redefinition

● Profiling data
○ Cache slightly outdated info to reduce amount of communication
○ Can tolerate imprecision without affecting correctness

24

JITServer reliability and security

25

● Better reliability than other types of disaggregation
○ No shared hard state
○ Client can switch to another JITServer instance or local JIT
○ Compiler crashes don’t bring down the whole JVM

● Security model
○ JITServer and all clients are in the same security domain (trust each other)
○ Encrypted communication (adds ~5% overhead)

Class loader identification across JVMs

● Runtime classes in JVM exist in the context of their class loaders
○ Same class loaded by different class loaders results in multiple distinct runtime classes
○ Need class loader instance to lookup class by name at runtime
○ Need to associate each class with its class loaders when serializing JIT-compiled code

● Challenge: class loaders are Java heap objects
○ Do not persist outside of running JVM process

● Heuristic: identify class loaders by name of 1st loaded class
○ Works well in practice: no failures in any applications we tried with JITServer
○ Failures in edge cases can only affect performance

■ E.g. code takes slow path
○ Correctness is always guaranteed

26

Compilation request latencies

 Unlimited JITServer CPU Equal JIT CPU resources

● Short compilations take longer remotely than locally due to network latency
● Long compilations are only faster at JITServer if it has lots of CPU resources
● JITServer cache hits are faster than most local compilations

27

