
JITServer: Disaggregated Caching JIT Compiler for the JVM in the Cloud
Extended abstract; originally published in USENIX ATC’22

Alexey Khrabrov
University of Toronto

Marius Pirvu
IBM

Vijay Sundaresan
IBM

Eyal de Lara
University of Toronto

1 Motivation

Java virtual machines (JVMs) rely on just-in-time (JIT)
compilers to improve application performance by con-
verting bytecodes into optimized machine code at run-
time. Unfortunately, JIT compilation can introduce signif-
icant runtime overheads in terms of processing power and
memory. The extra CPU cycles needed for compilation
can interfere with applications’ progress, delaying their
start-up, increasing their warm-up time or affecting the
response time and quality of service (QoS). Similarly, the
data structures allocated by the JIT compiler create un-
predictable spikes in memory usage resulting in higher
memory footprint. In our experiments, JIT compilation
accounted for up to 50% of CPU time used during the
start-up and warm-up phases of the applications, and for
up to hundreds of MBs of memory footprint.

The competition for resources between the application
and the JIT is more intense in CPU and memory con-
strained environments such as containers and VMs found
in cloud datacenters that aim to maximize resource uti-
lization and application density. Automatic scaling of
cloud applications is done by launching and shutting
down instances based on load. Frequent restarts of ap-
plications pose serious challenges to JVM-based work-
loads due to the high start-up overhead of JIT compilation,
which needs to be amortized over a long execution period.
Short-running application instances such as function-as-
a-service (FaaS) are also becoming increasingly common
in cloud computing. The memory overhead of JIT compi-
lation is more significant for smaller (in terms of overall
memory usage) application instances which are common
in the cloud (e.g., microservices).

2 Limitations of Existing Work

One way to circumvent the negative effects of JIT com-
pilation is to use static ahead-of-time (AOT) compila-
tion [3, 5, 22]. Its inherent limitation is the closed world

assumption: all the code that can execute at runtime must
be available at compile time. This assumption is only com-
patible with a subset of Java and JVM bytecodes, severely
limiting support for dynamic JVM features. Moreover,
static AOT compilers often generate suboptimal code due
to the lack of realistic runtime profiling data and compati-
bility with a wide range of target machines.

JIT compilation overhead can be reduced by caching
and sharing compiled code among JVMs [7, 10, 11, 23].
This approach does not completely eliminate the need for
a JIT compiler due to cache misses as the set of compiled
methods can vary from run to run. Shareable compiled
code is typically slower than regular JIT-compiled code
since it has to meet certain constraints in order to be relo-
catable and usable in a different JVM instance. Therefore,
performance critical methods still need to be JIT-compiled
in order to achieve peak throughput. Since such compila-
tions are responsible for most of the JIT compiler memory
overhead, this approach cannot effectively reduce peak
memory usage.

Using a cache of compiled methods in ephemeral ex-
ecution environments (e.g., containers) that are typical
in the cloud requires either (i) shipping a pre-populated
cache with the application, or (ii) sharing the cache lo-
cally between JVMs on a given host (populating it at
runtime). The 1st approach puts additional burden on ap-
plication developers, increases the complexity and cost
of continuous integration and deployment, and results in
larger image sizes. The 2nd approach forces schedulers to
pack instances of the same application on the same host,
leading to “hot spots” during load spikes when multiple
instances contend for (often oversubscribed) resources
and increasing applications’ exposure to host failures.

Existing work on JVM checkpoint/restore [13, 15, 21]
has only explored snapshots of well-defined state of the
JVM process after the start-up phase of the application
(excluding any methods compiled under load), and suffers
from the same usability issues as shipping a cache of
compiled methods. Reusing live JVM instances [14, 18]

1



only allows reuse of compiled code within the same host
and incurs a significant idle footprint.

JIT compiler disaggregation addresses the compilation
overheads by decoupling the JIT from the JVM and run-
ning it in a separate remote process. Previous work on
remote JIT compilation [8, 9, 12, 16, 17, 19, 20] focused
on embedded and mobile devices where local JIT is pro-
hibitively expensive in terms of memory, CPU, or energy
consumption, and has not considered overall resource us-
age including the compiler server. Existing systems are
based on simplified JITs that either do not rely on dy-
namic JVM runtime information, or only support static
AOT compilation of a subset of Java, or assume that all
the information needed to compile a method is included
in the compilation request, which becomes impractical in
a complex modern JIT.

While remote JIT reduces overall memory usage (since
the spikes of maximum memory usage from multiple
clients are unlikely to align), on the downside, it can result
in higher system-wide CPU usage, especially for short-
running workloads common in cloud computing, as we
show in our evaluation. The CPU cost and latency of each
compilation in this setting is higher compared to local
JIT due to communication overheads. JIT compilation
overheads are not eliminated, but rather transferred to a
different host, at the expense of additional networking and
serialization costs.

3 Key Insights

We argue that in order to achieve the full benefits of dis-
aggregated JIT, the compiler server resources must be
effectively shared between multiple client JVMs by mak-
ing it possible to reuse compilations of common meth-
ods. Taking advantage of the fact that there is often a lot
of code shared between JVMs in cloud workloads (e.g.,
multiple application instances for autoscaling), we cache
JIT-compiled code at the compilation server and reuse
it in multiple client JVMs. The main goal of our design
is to reduce the overall CPU usage by amortizing the
compilation costs over many JVMs. Reusing compiled
code happens transparently and does not add any com-
plexity to application development. Figure 1 illustrates
the architecture of our system.

Reusing JIT-compiled code across multiple JVM in-
stances is a challenging task: the code cannot be simply
plugged into a different JVM process in the general case
since it contains pointers to runtime entities (e.g., class
metadata and other compiled methods) located at different
virtual addresses in different JVMs, and relies on runtime
assumptions (e.g., about class hierarchies) that might not
hold in a different JVM environment. Due to the dynamic
nature of the JVM, identifying and locating runtime enti-
ties and verifying assumptions across JVM processes is

compilation request

cached native code

compilation request

native code

runtime info requests/responses
Client JVM

JIT compiler

…

Client JVM

JIT compiler

JITServer

Compiled 
code 
cache

JIT compiler

store load

Figure 1: JITServer architecture

more difficult compared to relocating statically-compiled
code in languages like C (where entities are simply iden-
tified by a globally unique name).

Our solution is to cache compiled method bodies at the
JIT server in a serialized format that includes serialization
records that describe how to adapt the code in another
JVM instance. We use relocation records to update the ad-
dresses of runtime entities and validation records to verify
the assumptions made by the compiler. Both relocations
and validations can always be expressed in terms of Java
classes, thus the main building block or serializing JIT-
compiled code is identifying classes that are equivalent at
runtime across JVMs (the same Java class definition can
result in distinct runtime classes).

Serialization records store enough information to
uniquely identify classes across JVMs from the point of
view of the JIT compiler, effectively assigning a global ID
to each runtime class. We identify class loaders (which are
necessary to lookup classes at runtime) across JVMs by
the name of the first loaded class - a heuristic that works
well in practice. We use secure cryptographic hashes
(e.g., SHA-256) of immutable class metadata (including
method bytecodes) for each class and interface in the in-
heritance chain to efficiently verify class equivalency in
any JVM instance.

Remote JIT is less susceptible to failures than other dis-
aggregated designs (e.g., memory disaggregation) since
it has no shared hard state. Unlike the case of mobile
and IoT devices targeted in previous remote JIT work,
network latencies in cloud datacenters are relatively low,
and our evaluation shows that remote JIT performs very
well in this setting. Modern cloud applications themselves
are also typically distributed, thus remote JIT does not
exacerbate the reliability and latency concerns.

Remote JIT shifts resource provisioning complexity
from the application to the infrastructure, which can be
arguably beneficial. Local JIT requires application devel-
opers to manage the complexity and extra costs of over-
provisioning memory (which goes unused after warm-up)
and CPU (to maintain QoS despite JIT activity during
warm-up) for each JVM. Instead, the operator’s effort to

2



XS S M L
AcmeAir cold: Container size

0

10

20

30
St

ar
t t

im
e,

 se
c

Local JIT
Remote JIT
Remote JIT + cache

XS S M L
AcmeAir cold: Container size

0

100

200

W
ar

m
-u

p 
tim

e,
 se

c

2 min 5 min 10 min
AcmeAir: Application lifespan

0.0

0.5

1.0

1.5

CP
U 

co
st

, m
se

c/
re

q

2 min 5 min 10 min
AcmeAir: Application lifespan

0

10

20

30

To
ta

l m
em

. u
sa

ge
, G

B

0 20 40 60
AcmeAir: Number of instances

0.00

0.25

0.50

0.75

1.00

1.25

Fu
ll 

wa
rm

-u
p 

tim
e

0 2000 4000 6000 8000
AcmeAir: Latency, microsec

0

100

200

Fu
ll 

wa
rm

up
 ti

m
e,

 se
c

Figure 2: Evaluation results for AcmeAir (lower is better)

setup compiler server autoscaling can be reused many
times across applications.

4 Main Contributions and Results

We describe the design and implementation of JITServer
- our disaggregated JIT caching compiler in Eclipse
OpenJ9 [2], a popular open source JVM. Unlike previous
work, JITServer is compliant with the JVM specification
and implemented in a production grade JVM with a so-
phisticated JIT. We provide insight into the challenges of
implementing remote JIT in a dynamic environment such
as the JVM and the ways to solve them, such as caching
JVM runtime information at the server to reduce commu-
nication overheads and correctly invalidating these caches
to support dynamic class loading and unloading.

We propose a novel mechanism that facilitates caching
of compiled native code in a remote JIT compilation sys-
tem and enables correct, transparent and efficient reuse of
such code by JVMs running on different machines. We
demonstrate that caching is necessary to achieve the full
benefits of JIT compiler disaggregation.

We present the first (to the best of our knowledge) study
of remote JIT in the context of cloud computing. We eval-
uate JITServer performance using 3 representative end-to-
end application benchmarks [1, 4, 6]. The main results for
one of the benchmarks (AcmeAir) are shown in Figure 2.
More detailed results (including other benchmarks) can
be found in the full paper. Our evaluation shows that:

• Remote JIT cannot be fully efficient without caching

and reusing compiled code - it often increases total
system-wide CPU cost (by up to 21%).

• Caching allows JITServer to reduce cluster-wide re-
source usage (by up to 77% for CPU and up to 62%
for memory), allowing more efficient, higher density
deployments of JVM-based applications in the cloud.

• JITServer significantly reduces application start-up and
warm-up times (by up to 58% and 87% respectively)
and memory footprint, especially in smaller containers,
without trading-off peak throughput.

• Caching dramatically improves JITServer scalability
and allows it to effectively handle more concurrent
clients and tolerate significantly higher network latency
(up to 8 ms). Note that network bandwidth has limited
effect on performance compared to latency since JIT-
Server exhibits a latency-bound communication pattern
(small request-reply message pairs).

5 Current and Future Work

We are currently investigating ways to improve the JIT
compiler in the disaggregated setting such as utilizing
profiling data from multiple clients. Caching and reusing
profiling data via JITServer is a promising approach to
further amortize JIT-related overheads across multiple
JVMs for compilations that are not cached (up to 30%
of methods depending on the application) by reusing the
most "expensive" input to the JIT compiler (profiling data)
and compiling methods earlier for future JVM instances
with a similar profile.

We plan to explore prefetching of server-cached code
to hide compilation latency and further reduce cold start
times. We will study the trade-off between the perfor-
mance of relocatable code and the JITServer cache hit
rate, and explore sharing compiled code across applica-
tions that use common frameworks and libraries. We plan
to apply JITServer to other workloads such as FaaS, mi-
croservices, and data analytics.

One of the main prerequisites for integrating JITServer
into serverless/FaaS frameworks is the ability to auto-
matically size and scale compilation resources. Efficient
horizontal autoscaling requires provisioning multiple rela-
tive small (in terms of resources) JITServer instances that
are started and stopped on demand. As we have shown in
this paper, caching compiled code at the server is essential
for reducing overall CPU usage and other performance
aspects, thus starting new JITServer instances with a cold
cache would be suboptimal. We are currently working on
sharing the cache of compiled methods across multiple
JITServer instances through persistent snapshots. The per-
sistence also allows scaling a JITServer deployment down
to zero while preserving the cache.

3



References

[1] AcmeAir sample and benchmark. https://
github.com/blueperf/acmeair-monolithic-
java.

[2] Eclipse OpenJ9. https://www.eclipse.org/
openj9/.

[3] GraalVM native image. https://www.graalvm.
org/reference-manual/native-image/.

[4] Java EE7: DayTrader7 sample. https://github.
com/wasdev/sample.daytrader7.

[5] JEP 295: Ahead-of-time compilation. https://
openjdk.java.net/jeps/295.

[6] Spring PetClinic sample application. https:
//github.com/spring-projects/spring-
petclinic.

[7] D. Bhattacharya, K. B. Kent, E. Aubanel, D. Hei-
dinga, P. Shipton, and A. Micic. Improving the
performance of JVM startup using the shared class
cache. In 2017 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing
(PACRIM), PACRIM, pages 1–6, 2017.

[8] Guangyu Chen, Byung-Tae Kang, Mahmut Kan-
demir, Narayanan Vijaykrishnan, Mary Jane Irwin,
and Rajarathnam Chandramouli. Studying energy
trade offs in offloading computation/compilation in
Java-enabled mobile devices. IEEE Trans. Parallel
Distrib. Syst., 15(9):795–809, September 2004.

[9] Guilin Chen, Byung-Tae Kang, Mahmut T. Kan-
demir, Narayanan Vijaykrishnan, Mary Jane Irwin,
and Rajarathnam Chandramouli. Energy-aware com-
pilation and execution in Java-enabled mobile de-
vices. In 17th International Parallel and Distributed
Processing Symposium (IPDPS 2003), 22-26 April
2003, Nice, France, CD-ROM/Abstracts Proceed-
ings, page 34. IEEE Computer Society, 2003.

[10] Ben Corrie and Hang Shao. Class sharing in
Eclipse OpenJ9. https://developer.ibm.com/
tutorials/j-class-sharing-openj9/, 2018.

[11] Grzegorz Czajkowski, Laurent Daynès, and
Nathaniel Nystrom. Code sharing among virtual
machines. In Proceedings of the 16th European
Conference on Object-Oriented Programming,
ECOOP ’02, page 155–177, Berlin, Heidelberg,
2002. Springer-Verlag.

[12] Bertrand Delsart, Vania Joloboff, and Eric Paire.
JCOD: A lightweight modular compilation technol-
ogy for embedded Java. In Proceedings of the Sec-
ond International Conference on Embedded Soft-
ware, EMSOFT ’02, page 197–212, Berlin, Heidel-
berg, 2002. Springer-Verlag.

[13] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guan-
glu Yan, Chenggang Qin, Qixuan Wu, and Haibo
Chen. Catalyzer: Sub-millisecond startup for server-
less computing with initialization-less booting. In
Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20,
page 467–481, New York, NY, USA, 2020. Associa-
tion for Computing Machinery.

[14] Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and
Gustavo Alonso. Photons: Lambdas on a diet. In
Proceedings of the 11th ACM Symposium on Cloud
Computing, SoCC ’20, page 45–59, New York, NY,
USA, 2020. Association for Computing Machinery.

[15] Kiyokuni Kawachiya, Kazunori Ogata, Daniel Silva,
Tamiya Onodera, Hideaki Komatsu, and Toshio
Nakatani. Cloneable JVM: A new approach to start
isolated Java applications faster. In Proceedings of
the 3rd International Conference on Virtual Execu-
tion Environments, VEE ’07, pages 1–11, New York,
NY, USA, 2007. ACM.

[16] Joel Koshy, Ingwar Wirjawan, Raju Pandey, and
Yann Ramin. Balancing computation and communi-
cation costs: The case for hybrid execution in sensor
networks. Ad Hoc Networks, 6(8):1185–1200, 2008.

[17] Han B. Lee, Amer Diwan, and J. Eliot B. Moss.
Design, implementation, and evaluation of a com-
pilation server. ACM Trans. Program. Lang. Syst.,
29(4):18–es, August 2007.

[18] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang,
Nikola Grcevski, and Ding Yuan. Don’t get caught
in the cold, warm-up your JVM: Understand and
eliminate JVM warm-up overhead in data-parallel
systems. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Imple-
mentation, OSDI’16, pages 383–400, Berkeley, CA,
USA, 2016. USENIX Association.

[19] Matt Newsome and Des Watson. Proxy compila-
tion of dynamically loaded Java classes with MoJo.
In Proceedings of the Joint Conference on Lan-
guages, Compilers and Tools for Embedded Sys-
tems: Software and Compilers for Embedded Sys-
tems, LCTES/SCOPES ’02, page 204–212, New

4

https://github.com/blueperf/acmeair-monolithic-java
https://github.com/blueperf/acmeair-monolithic-java
https://github.com/blueperf/acmeair-monolithic-java
https://www.eclipse.org/openj9/
https://www.eclipse.org/openj9/
https://www.graalvm.org/reference-manual/native-image/
https://www.graalvm.org/reference-manual/native-image/
https://github.com/wasdev/sample.daytrader7
https://github.com/wasdev/sample.daytrader7
https://openjdk.java.net/jeps/295
https://openjdk.java.net/jeps/295
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic
https://developer.ibm.com/tutorials/j-class-sharing-openj9/
https://developer.ibm.com/tutorials/j-class-sharing-openj9/


York, NY, USA, 2002. Association for Computing
Machinery.

[20] Radu Teodorescu and Raju Pandey. Using JIT com-
pilation and configurable runtime systems for effi-
cient deployment of Java programs on ubiquitous
devices. In Proceedings of the 3rd International
Conference on Ubiquitous Computing, UbiComp
’01, page 76–95, Berlin, Heidelberg, 2001. Springer-
Verlag.

[21] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu.
Replayable execution optimized for page sharing
for a managed runtime environment. In Proceed-
ings of the Fourteenth EuroSys Conference 2019,

EuroSys ’19, New York, NY, USA, 2019. Associa-
tion for Computing Machinery.

[22] Christian Wimmer, Codrut Stancu, Peter Hofer, Vo-
jin Jovanovic, Paul Wögerer, Peter B. Kessler, Oleg
Pliss, and Thomas Würthinger. Initialize once, start
fast: Application initialization at build time. Proc.
ACM Program. Lang., 3(OOPSLA):184:1–184:29,
October 2019.

[23] Xiaoran Xu, Keith Cooper, Jacob Brock, Yan Zhang,
and Handong Ye. ShareJIT: JIT code cache sharing
across processes and its practical implementation.
Proc. ACM Program. Lang., 2(OOPSLA):124:1–
124:23, October 2018.

5


	Motivation
	Limitations of Existing Work
	Key Insights
	Main Contributions and Results
	Current and Future Work

