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• Persistent Memory (PM)
• Non-volatile like storage and 

byte-addressable like DRAM
• High performance close to DRAM
• Cost per GB >>>> HDD or SSD
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• Persistent Memory (PM)
• Non-volatile like storage and 

byte-addressable like DRAM
• High performance close to DRAM
• Cost per GB >>>> HDD or SSD

• Ensuring high utilization is more 
critical for cost efficiency
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• Disaggregated Persistent Memory (DPM)
+ Share PM à Increase utilization, Reduce TCO (Total Cost Ownership)
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• Disaggregated Persistent Memory (DPM)
+ Share PM à Increase utilization, Reduce TCO (Total Cost Ownership)
+ Disaggregate PM à Scale resources independently, Separate failure domains
⎯ Access PM over network à Network latency >> PM latency

Disaggregated PM (DPM)

Network interconnect (i.e. RDMA)
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• Disaggregated Persistent Memory (DPM)
+ Share PM à Increase utilization, Reduce TCO
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Data processing system done right for DPM

To benefit from the independence of scaling resources 
and failure, it must be elastic and scalable

Despite expensive networking overheads, it must 
provide high performance



Key-Value Store (KVS) for DPM

• Simple key-value APIs: get, put, update, delete …

10



Key-Value Store (KVS) for DPM

• Simple key-value APIs: get, put, update, delete …
• Support various applications under cloud environment

• Require dynamic working sets/sizes and non-uniform workload 
patterns with varying skew

11



Key-Value Store (KVS) for DPM

• Simple key-value APIs: get, put, update, delete …
• Support various applications under cloud environment

• Require dynamic working sets/sizes and non-uniform workload 
patterns with varying skew

• Goals of ideal DPM KVS
• High common-case performance
• Scalability with the amount of provisioned resource
• Fast reconfiguration to change the amount of resource elastically
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Prior DPM KVS
• Architectural limitations in achieving all three goals
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KVSs
Goals AsymNVM Clover

High 
performance ✓ X

Scalability ✓ X

Lightweight 
reconfiguration X ✓
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Prior DPM KVS

1Teng Ma, et al., AsymNVM: An Efficient Framework for Implementing Persistent Data Structures on Asymmetric NVM Architecture, ASPLOS’20

• AsymNVM1

• Exclusive ownership to 
partitioned data/metadata

* Solid color: exclusive ownership
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Prior DPM KVS
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• AsymNVM1

• Exclusive ownership to 
partitioned data/metadata

+ Cache data without consistency 
overheads
+ Preserve data locality of caches

Shared nothing

Owns: D4-D6

Data Data Data Data Data Data

DPM

Local
memory

CPU
Local

memory

CPU

Owns: D1-D3

Partitioned
data, 

metadata,
ownership

D1 D2 D3 D4 D5 D6

Metadata Metadata

+ High performance/scalability

* Solid color: exclusive ownership

1Teng Ma, et al., AsymNVM: An Efficient Framework for Implementing Persistent Data Structures on Asymmetric NVM Architecture, ASPLOS’20



Prior DPM KVS
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• AsymNVM1

• Exclusive ownership to 
partitioned data/metadata

+ Cache data without consistency 
overheads
+ Preserve data locality of caches
⎯ Expensive data reorganization 
upon reconfigurations
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Prior DPM KVS
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• Clover1

• Share data, metadata, and 
ownership

* Hatched and mixed color: shared ownership



Prior DPM KVS
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• Clover1

• Share data, metadata, and 
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Prior DPM KVS
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• Clover1

• Share data, metadata, and 
ownership

+ No data reorganization upon 
reconfigurations
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Prior DPM KVS
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• Clover1

• Share data, metadata, and 
ownership

+ No data reorganization upon 
reconfigurations
⎯ Expensive data consistency 
overheads between caches
⎯ Lack of data locality of caches
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Prior DPM KVS
• Architectural limitations in achieving all three goals
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KVSs
Goals Clover AsymNVM

High 
performance X ✓

Scalability X ✓

Lightweight 
reconfiguration ✓ X



DINOMO

First DPM KVS achieving high performance, scalability, and fast 
reconfiguration simultaneously

https://github.com/utsaslab/dinomo

KVSs
Goals DINOMO AsymNVM Clover

High 
performance ✓ ✓ X

Scalability ✓ ✓ X

Lightweight 
reconfiguration ✓ X ✓
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DINOMO

First DPM KVS achieving high performance, scalability, and fast 
reconfiguration simultaneously

Adapt techniques (ownership partitioning, adaptive caching, 
etc.) from storage research community for DPM

Full end-to-end implementations including KVS control plane, 
data plane, and client

Upto 10x better performance at scale and elasticity

https://github.com/utsaslab/dinomo 24



• Ownership partitioning
• Disaggregated adaptive caching
• Evaluation
• Discussion

Outline
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Goals and design techniques

Goal Dinomo technique

High performance

Scalability

Lightweight reconfiguration 
(Elasticity)
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Goals and design techniques
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Goal Dinomo technique

High performance
Ownership partitioning

Scalability Ownership partitioning

Lightweight reconfiguration 
(Elasticity) Ownership partitioning



Hybrid Architecture
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Hybrid Architecture
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+ High performance/scalability

⎯ Low elasticity
+ High elasticity

⎯ Low performance/scalability



Hybrid Architecture
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Ownership partitioning
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Insight: Data access and ownership can be an 
independent consideration owing to disaggregation

Approach: Partition ownership across compute 
nodes while sharing access to data through DPM
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Ownership Partitioning
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• Shared data/metadata
• Partitioned ownership Owns: D3, D4, D6Owns: D1, D2, D5

Local
memory

CPU
Local

memory

CPU

DPM

Partitioned
ownership; 
shared data, 

metadata

Data Data Data Data Data Data

D1 D2 D3 D4 D5 D6

Metadata

* Solid color: exclusive ownership
Hatched and mixed color: shared ownership



Ownership Partitioning

35

Owns: D3, D4, D6Owns: D1, D2, D5

Local
memory

CPU
Local

memory

CPU

DPM

Partitioned
ownership; 
shared data, 

metadata

Data Data Data Data Data Data

D1 D2 D3 D4 D5 D6

Metadata

• Shared data/metadata
+ Allow fast reconfiguration without 
expensive data reorganization

• Partitioned ownership

+ High elasticity

* Solid color: exclusive ownership
Hatched and mixed color: shared ownership



Ownership Partitioning
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Goals and design techniques
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Goal Dinomo technique

High performance
Disaggregated adaptive cache

Ownership partitioning

Scalability Ownership partitioning

Lightweight reconfiguration 
(Elasticity) Ownership partitioning



Caching

38

• Number of network round trips significantly impacts on 
overall system performance



Caching
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• Number of network round trips significantly impacts on 
overall system performance

• Cache data or metadata into the memory of compute 
nodes to reduce round trips to DPM

• Important to minimize cache misses



Caching

• Cache miss à multiple RTs
• Traverse metadata index 

structures in DPM
• Fetch data from DPM

DPM

High-performance Network Interconnect

40

DataDataData DataDataData

Metadata

Compute nodeMiss

Cache



Caching

• Static policy
• Value
• Shortcut

DPM

High-performance Network Interconnect

Compute node
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Caching

• Static policy
• Value

• Zero round trip, but more space
• Shortcut

DPM

High-performance Network Interconnect
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Caching

• Static policy
• Value

• Zero round trip, but more space
• Shortcut

• One round trip, but less space
DPM

High-performance Network Interconnect
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Is it better to cache a few values without overheads 
on hits, or a larger number of shortcuts with fixed 

hit overheads?

Answer: Efficient ratio is dependent on workload 
patterns and aggregate memory space

We need an adaptive policy changing ratio 
between values and shortcuts!

44



Is it better to cache a few values without overheads 
on hits, or a larger number of shortcuts with fixed 

hit overheads?

Answer: Efficient ratio is dependent on workload 
patterns and aggregate memory space

We need an adaptive policy changing ratio 
between values and shortcuts!

45

Skew Uniform

Value cache
wins

Shortcut cache
wins



Is it better to cache a few values without overheads 
on hits, or a larger number of shortcuts with fixed 

hit overheads?

Answer: Efficient ratio is dependent on workload 
patterns and aggregate memory space

We need an adaptive policy changing ratio 
between values and shortcuts!
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Skew Uniform

Value cache
wins

Shortcut cache
wins

Real-world 
workloads



Is it better to cache a few values without overheads 
on hits, or a larger number of shortcuts with fixed 

hit overheads?

Answer: Efficient ratio depends on workload 
patterns and available memory space

We need an adaptive policy changing ratio 
between values and shortcuts!
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Disaggregated Adaptive Caching

• Adaptive policy
• Change the boundary via demotion and promotion

Values Shortcuts
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Disaggregated Adaptive Caching

• Adaptive policy
• Change the boundary via demotion and promotion
• Promotion policy considering sizes, hit costs, and miss costs

Values Shortcuts

Promote shortcut to 
value at hit

51

Demote value to 
shortcut at eviction



• Ownership partitioning
• Disaggregated adaptive cache
• Evaluation
• Discussion

Outline
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Evaluation
• How does DINOMO fare against the state-of-the-art in 

terms of performance and scalability?
• How elastic and responsive is DINOMO while handling 

changes in workloads?
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Evaluation setup
• System configuration

• DPM: 4 threads, 110GB of DRAM to emulate PM
• 16 CNs: 8 threads, 1GB of DRAM for caching (≈1% of the DPM)
• Connected via 56Gbps ConnectX-3 RNICs

• Baseline
• Performance/scalability: Clover (shared everything, shortcut-only cache)
• Elasticity: DINOMO-N (DAC, but partition data/metadata)

• Workload
• YCSB workloads with 8B keys and 1KB values
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Performance and Scalability
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• DINOMO scales to 16 CNs, but Clover does not beyond 4 CNs

CNs CNs CNs



Performance and Scalability
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• DINOMO scales to 16 CNs, but Clover does not beyond 4 CNs
• With 16 CNs, DINOMO outperforms Clover upto 10x

CNs CNs CNs

10X 4.4X 3.8X



Elasticity
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Elasticity
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• DINOMO: Brief throughput dips when adding/removing CNs
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Elasticity
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• DINOMO: Brief throughput dips when adding/removing CNs
• DINOMO-N: Throughput dips for 20-40 seconds due to expensive 

data reorganization
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• Ownership partitioning
• Disaggregated adaptive cache
• Evaluation
• Discussion

Outline
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Discussion
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• CXL (Compute Express Link)
• A cache-coherent interconnect over PCIe
• CXL.memory for memory expansion (Type 3)
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Memory

CXL Host

CXL
Memory

CXL Device

CXL Memory

Memory

Memory
Direct 

load/store 
access
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• CXL VS. RDMA-based disaggregation
• Lower access latency

• CXL (170 - 250ns), RDMA (1 - 4μs)
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Main Memory

CXL-Memory
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• CXL VS. RDMA-based disaggregation
• Lower access latency

• CXL (170 - 250ns), RDMA (1 - 4us)
• Hardware-guaranteed coherence
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• Ownership partitioning in the context of CXL
• CXL enables coherent memory sharing
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• Ownership partitioning in the context of CXL
• CXL enables coherent memory sharing
• Just because we can share doesn’t mean we should
• Design principle of scalable system

• Avoid cache coherence overheads
• Ownership partitioning à Avoid coherence traffic between 

CXL-enabled hosts and devices
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• Disaggregated adaptive cache in the context of CXL
• Caching data in compute nodes

• A key to improve performance in RDMA-based disaggregation
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• Disaggregated adaptive cache in the context of CXL
• Caching data in compute nodes

• A key to improve performance in RDMA-based disaggregation
• Much lower access latency to disaggregated memory over CXL 
• Unclear if caching would be still useful for low-latency medias

• e.g., page cache bypass in PM file systems to avoid cache-
management and data-copy overheads



Discussion
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• Disaggregated adaptive cache in the context of CXL
• Caching data to the local memory of compute nodes has been 

a key to improve performance in disaggregation settings
• With CXL, access latency to disaggregated memory becomes 

much lower than RDMA 
• Unclear if caching would be still useful for low-latency medias

• e.g., bypassing page cache in PM file systems to avoid cache-
management and data-copy overheads

• Future work: How to utilize host local memory well



DINOMO
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• First KVS for DPM achieving high performance, 
scalability, and elasticity simultaneously

• Use a novel combination of techniques, ownership 
partitioning and disaggregated adaptive cache

• Experimentally show DINOMO can scale performance 
and efficiently react to reconfigurations

• Try our KVS: https://github.com/utsaslab/dinomo

https://github.com/utsaslab/dinomo

