
DINOMO: An Elastic, Scalable, High-Performance Key-Value
Store for Disaggregated Persistent Memory

Sekwon Lee∗, Soujanya Ponnapalli∗, Sharad Singhal‡,
Marcos K. Aguilera⋄, Kimberly Keeton†, Vijay Chidambaram∗⋄

†Google, ‡Hewlett Packard Labs, ∗University of Texas at Austin, ⋄VMware Research

1 INTRODUCTION

Large cloud providers operate at a much larger scale than traditional
enterprise data centers and aim to optimize their infrastructures
for high utilization. However, recent work indicates that resources
in cloud data centers remain underutilized [12, 16].

One promising way to increase resource utilization is to disag-
gregate resources [2, 5, 9, 11]. In a disaggregated cluster, resources
such as CPU, memory, and storage are each collected into a separate
central network-attached pool. By sharing these resources across
users and applications, utilization can be increased significantly.
Furthermore, each resource can be scaled up or down indepen-
dently of the others. Such disaggregation has long been practiced
for storage in the form of network-attached storage (NAS) [6] and
Storage Area Networks (SAN) [3].

Persistent Memory (PM) is a new memory technology that pro-
vides durability like traditional storage, with performance close
to DRAM [7, 14, 20]. Since PM has much higher cost per GB than
conventional storage [1], it is critical to achieve high utilization in
PM deployments. Similar to traditional storage, the utilization of
PM would increase from disaggregation. However, the DRAM-like
latencies of PMmake disaggregation challenging, since the network
latency is an order of magnitude higher than PM latency.

We are interested in using Disaggregated Persistent Memory
(DPM) to build persistent key-value stores (KVSs), which are critical
pieces of software infrastructure. The KVS consists of a number of
KVS nodes (KNs) equipped with general-purpose processors, a rela-
tively small amount of local DRAM, and high-performance network
primitives like RDMA to access DPM over the network [18]. An
ideal DPM KVS would have a number of properties: high common-
case performance, scalability, and quick reconfiguration that allows
handling failures, bursty workloads, and load imbalance efficiently.

Building a KVS that achieves all the goals simultaneously is
challenging. First, the KVS must provide high performance, de-
spite expensive network round trips (RTs) for accessing data and
metadata in DPM. Second, to benefit from independent scaling of
KNs and PM, the KVS must be elastic and support lightweight re-
configuration of resources. Finally, the KVS must provide scalable
performance with an increase in active resources (e.g., KNs).

Prior DPM KVSs make design trade-offs that make these goals
difficult to satisfy simultaneously. For example, AsymNVM [13]
achieves high performance by adopting a shared-nothing archi-
tecture to enable high cache locality at KNs. However, expensive
data reorganization is needed when changing the number of KNs,
thus limiting elasticity. Clover [17] supports high elasticity using a
shared-everything architecture where data is shared across KNs,
and any KN can handle any request. However, performance and
scalability suffer as a result of poor cache locality and consistency

…

DPM
…

0 1 N

Log
segments

Key-Value Pairs

KN #0

Cached log segments

Values Shortcuts
Adaptive cache

Merged by
DPM processors

KN #1

High-performance Network Interconnect

KN #N

Persistent Index

Figure 1: Dinomo data plane

overheads (e.g., cache coherence, contention, and synchronization
overheads due to sharing) in the common case [15].

In this work, we present Dinomo, the first DPM KVS that simul-
taneously achieves high common-case performance, scalability, and
lightweight online reconfiguration. Dinomo also provides lineariz-
able reads and writes. To achieve these goals, Dinomo carefully
adapts techniques from the storage research community, including
caching, ownership partitioning, and lock/log-free PM indexing.
Data organization on DPM. Figure 1 shows the data plane com-
ponents in Dinomo. Dinomo stores data and metadata on DPM to
enable concurrent and consistent access by all KNs. Because DPM
is shared among all KNs, it functions as the source of ground truth
in the system. To enable consistent updates, data is written into the
log segments in DPM in the form of log entries by the KNs. These
log entries are asynchronously merged in order into the metadata
index by the processors at DPM. For its metadata index, DPM uses
a concurrent PM index [10] that provides lock-free reads and log-
free in-place-writes; the lock-free reads eliminate synchronization
overheads between KNs and log-free in-place-writes allow DPM
processors to concurrently update the metadata.
Disaggregated Adaptive Caching (DAC). Similar to other disag-
gregated systems, Dinomo reduces network RTs by caching data
and metadata in the local DRAM of each KN, as shown in Figure 1.
Data is cached by storing the key-value pair, and metadata is cached
by storing a pointer to the data on DPM (termed shortcuts [17]). To
determine how best to divide the cache space between data and
metadata, Dinomo uses DAC, a novel adaptive caching policy that
actively maintains the right balance between caching values and
shortcuts based on the workload patterns and available memory at
KNs. DAC is based on the following insight. Performance is highly
correlated with the number of network RTs, so we seek to min-
imize that. Caching a shortcut reduces RTs from 𝑀 (where 𝑀 is
the cache-miss cost of an index lookup) to one, while caching a
value instead of a shortcut reduces RTs from one to zero. Thus,



1 2 4 8 16
Number of KNs

0
1
2
3
4
5

Th
ro

ug
hp

ut
 (M

Op
s/

se
c)

50% reads/50% updates

1 2 4 8 16
Number of KNs

0
1
2
3
4
5

95% reads/5% updates

1 2 4 8 16
Number of KNs

0
1
2
3
4
5

100% reads

Dinomo
Clover

Figure 2: Performance scalability comparison with Clover

caching shortcuts provides the bigger gain. We treat value caching
as an optimization on top of shortcut caching. Value caching is used
when we have spare space in the cache, or when we observe that
storing a value can serve more requests than storing an equivalent
number of shortcuts. With DAC, Dinomo makes efficient use of
the memory at KNs without any assumptions about the workload.
Ownership Partitioning (OP). While caching at the KNs can
reduce network RTs, it can incur significant consistency overheads
when KNs can share the same data. To handle this concern,Dinomo
partitions the ownership of data across KNs (i.e., a KV pair may
only be read or written by its owner), while data and metadata
are shared via DPM. This provides three benefits. First, it allows
KNs to cache the data they own, thus providing high cache locality
without consistency overheads. Second, by sharing the data and
metadata, OP supports changing the number of KNs or rebalancing
their load by repartitioning only the ownership of data among
KNs, without expensive data reorganization at DPM. Finally, since
each key is only accessed by one KN at any given point, Dinomo
achieves linearizable reads and writes. With OP, Dinomo achieves
high performance and scalability from locality-preserving KN-side
caching without consistency overheads, and high elasticity from
lightweight reconfiguration.
Limitations. Our work has a number of limitations. First, while we
address the challenge of scaling KNs, we do not tackle how to make
DPM reliable or scalable. Second, Dinomo targets key-value store
functionality for DPM systems. Many of its ideas may be equally
applicable for a broader range of DPM-based storage systems as
well as disaggregated DRAM systems, but we have not explored
this. We consider these areas ripe for future work.

2 EVALUATION

We now evaluate the performance and scalability of Dinomo. As
our baseline, we use Clover [17], a state-of-the-art and open-source
DPM KVS. Clover has a shared-everything architecture and caches
only shortcuts at its KNs. Besides Clover, we implement Dinomo-N
to compare the elasticity of Dinomowith a shared-nothing counter-
part; it uses DAC but partitions data and metadata in DPM, where
each partition is exclusively accessed by a single KN.
Experiment setup.We use InfiniBand-enabled (IB-enabled) servers
as hosts for KNs and DPM; each two-socket server has Intel Xeon
E5-2670v3 processors, 24 cores at 2.30 GHz in total, and 128 GB
DRAM. The shared DPM uses a maximum of 4 threads and 110 GB
of DRAM as a proxy for the PM, which is registered to be RDMA-
accessible. Each KN uses a maximum of 8 threads and 1 GB of
DRAM for caching (≈1% of the DPM size). DPM and the KNs are
connected by Mellanox FDR ConnectX-3 adapters with 56 Gbps per

0 50 100 150 200 250 300
Time (sec)

0

200

400

600

800

Th
ro

ug
hp

ut
 (K

Op
s/

s)

Load increase KN join KN join Load drop KN removal

Dinomo
Dinomo-N

Figure 3: Throughput of Dinomo and Dinomo-N over time

while changing the load and number of KNs

port. We emulate PM using DRAM, as performance is constrained
by the network rather than PM or DRAM [1, 8]. For Clover, we use
an extra IB-enabled server for its metadata server with 6 threads (4
workers, 1 epoch thread, 1 GC thread).
Workloads and configurations. We use YCSB-style workloads [4,
19] with three request patterns: read-only (100% reads), read-mostly
(95% reads/5% updates), and write-heavy (50% reads/50% updates).
These workloads use 8B keys and 1KB values. For each experiment,
we first load 32 GB of data (key-value pairs) and then write up to
100GB of data during the workload including inserts. With 16 KNs,
each equipped with a 1GB cache, the KNs can cache up to 50% of
the loaded dataset. We generate the workload from separate client
nodes with 64 threads respectively.
Performance and scalability. We compare the end-to-end per-
formance and scalability of Dinomo and Clover. We use workloads
with moderate skew (Zipf 0.99) to observe the performance and
scalability in the common case. We use 8 client nodes to run these
workloads and measure the peak throughput. As shown in Fig-
ure 2, Dinomo’s throughput scales to 16 KNs. In contrast, Clover’s
throughput does not scale beyond 4 KNs due to either a network
bottleneck or the CPU bottleneck from its metadata server. With
16 KNs, Dinomo outperforms Clover by at least 3.8× across all
workloads. Dinomo has a higher cache hit rate (from values) with
more KNs and takes fewer RTs/op than Clover, owing to DAC and
OP. Clover has higher network costs due to shortcut-only caching
and a lack of locality caused by the shared-everything architecture
that results in consistency overheads and redundant caching.
Elasticity. We evaluate Dinomo with bursty, irregular workloads
and compare its elasticity in scaling KNs with Dinomo-N. We use
the write-heavy workload with low skew (Zipf 0.5). Figure 3 shows
the behavior of Dinomo and Dinomo-N during this experiment.
To produce the bursty, irregular workload, we start running the
workload using 1 client node for 20 seconds, then increase the
load on the systems by 7× by adding 7 additional client nodes. At
the 230-second mark, we remove 7 client nodes to lower the load
by 7× again. When the load increases at 30 seconds, Dinomo and
Dinomo-N react by adding new KNs at 40 and 140 seconds, respec-
tively, to spread the load. Once the new KNs come online, Dinomo
shows brief throughput dips, as the nodes update their hash rings.
However, Dinomo-N experiences throughput dips for 30-40 sec-
onds, where the throughput drops to 0 due to the processing delay
during data reorganization. At 230 seconds, the load is suddenly
reduced. While removing the under-utilized KN, Dinomo-N shows
a 20-second throughput dip before stabilizing.



REFERENCES

[1] Thomas E. Anderson, Marco Canini, Jongyul Kim, Dejan Kostić, Youngjin Kwon,
Simon Peter, Waleed Reda, Henry N. Schuh, and Emmett Witchel. 2020. Assise:
Performance and Availability via Client-Local NVM in a Distributed File System.
In Proceedings of the 14th USENIX Conference on Operating Systems Design and
Implementation. 1011–1027.

[2] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. 2020. Disaggregation and
the Application. In Proceedings of the 12th USENIX Workshop on Hot Topics in
Cloud Computing. Article 15.

[3] Richard Barker and Paul Massiglia. 2001. Storage Area Network Essentials: A Com-
plete Guide to Understanding and Implementing SANs (1st ed.). Wiley Publishing.

[4] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing. 143–154.

[5] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Network Require-
ments for Resource Disaggregation. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation. 249–264.

[6] Garth A. Gibson and Rodney Van Meter. 2000. Network Attached Storage
Architecture. Commun. ACM 43, 11 (nov 2000), 37–45.

[7] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the Intel
Optane DC Persistent Memory Module. https://doi.org/10.48550/ARXIV.1903.
05714 Accessed: 2022-09-19.

[8] Anuj Kalia, David Andersen, and Michael Kaminsky. 2020. Challenges and
Solutions for Fast Remote Persistent Memory Access. In Proceedings of the 11th
ACM Symposium on Cloud Computing. 105–119.

[9] Kimberly Keeton. 2015. The Machine: An Architecture for Memory-Centric
Computing. In Proceedings of the 5th International Workshop on Runtime and
Operating Systems for Supercomputers. Article 1, 1 pages.

[10] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay
Chidambaram. 2019. Recipe: Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 462–477.

[11] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K.
Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated Memory for Expansion
and Sharing in Blade Servers. In Proceedings of the 36th Annual International
Symposium on Computer Architecture. 267–278.

[12] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong Xu, and Tongxin Bai. 2017.
Imbalance in the Cloud: an Analysis on Alibaba Cluster Trace. In Proceedings of
IEEE International Conference on Big Data. 2884–2892.

[13] Teng Ma, Mingxing Zhang, Kang Chen, Zhuo Song, Yongwei Wu, and Xuehai
Qian. 2020. AsymNVM: An Efficient Framework for Implementing Persistent
Data Structures on Asymmetric NVM Architecture. In Proceedings of the 25th
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. 757–773.

[14] Intel Optane DC Persistent Memory. 2022. https://www.intel.com/content/www/
us/en/architecture-and-technology/optane-dc-persistent-memory.html. Ac-
cessed: 2022-02-16.

[15] Danica Porobic, Ippokratis Pandis, Miguel Branco, Pınar Tözün, and Anastasia
Ailamaki. 2012. OLTP on Hardware Islands. Proc. VLDB Endow. 5, 11 (jul 2012),
1447–1458.

[16] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene
Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes. 2020. Borg: The next
Generation. In Proceedings of the Fifteenth European Conference on Computer
Systems. Article 30, 14 pages.

[17] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating Persistent
Memory and Controlling Them Remotely: An Exploration of Passive Disaggre-
gated Key-Value Stores. In Proceedings of the 2020 USENIX Conference on Usenix
Annual Technical Conference. 33–48.

[18] Haris Volos, Kimberly Keeton, Yupu Zhang, Milind Chabbi, Se Kwon Lee, Mark
Lillibridge, Yuvraj Patel, and Wei Zhang. 2018. Memory-Oriented Distributed
Computing at Rack Scale. In Proceedings of the ACM Symposium on Cloud Com-
puting. 529.

[19] Chenggang Wu, Vikram Sreekanti, and Joseph M. Hellerstein. 2019. Autoscaling
Tiered Cloud Storage in Anna. Proc. VLDB Endow. 12, 6 (feb 2019), 624–638.

[20] Jian Yang, Juno Kim,MortezaHoseinzadeh, Joseph Izraelevitz, and Steve Swanson.
2020. An Empirical Guide to the Behavior and Use of Scalable Persistent Memory.
In 18th USENIX Conference on File and Storage Technologies. 169–182.

https://doi.org/10.48550/ARXIV.1903.05714
https://doi.org/10.48550/ARXIV.1903.05714
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

	1 Introduction
	2 Evaluation
	References

