MeSHwA: The case for a Memory-Safe Software and
Hardware Architecture for Serverless Computing

Anjo Vahldiek-Oberwagner
Intel Labs
Berlin, Germany

Abstract

Motivated by developer productivity, serverless com-
puting, and microservices have become the de facto
development model in the cloud. Microservices decom-
pose monolithic applications into separate functional
units deployed individually. This deployment model, how-
ever, costs CSPs a large infrastructure tax of more than
25% [27, 53]. To overcome these limitations, CSPs shift
workloads to Infrastructure Processing Units (IPUs) like
Amazon’s Nitro [14] or, complementary, innovate by
building on memory-safe languages and novel software
abstractions [19, 56].

Based on these trends, we hypothesize a Memory-
Safe Software and Hardware Architecture providing a
general-purpose runtime environment to specialize func-
tionality when needed and strongly isolate components.
To achieve this goal, we investigate building a single ad-
dress space OS or a multi-application library OS, possible
hardware implications, and demonstrate their capabili-
ties, drawbacks and requirements. The goal is to bring
the advantages to all application workloads including
legacy and memory-unsafe applications, and analyze how
hardware may improve the efficiency and security.

1 Introduction

Serverless computing, and microservices have recently
gained in popularity to deploy cloud services. They im-
prove developer productivity by focusing on business
logic and separating functional services. Function-as-a-
Service (FaaS) is a special form of serverless computing.
In an extreme case microservices implement functional
decomposition similar to FaaS. With FaaS offering the
smallest services, the techniques are on a spectrum for
service size. Throughout this paper we will refer to server-
less computing, microservices and FaaS interchangeably
and refer to the application as a service. Cloud Service
Providers (CSPs) run and provide the infrastructure
software connecting each service. This abstraction comes
at the cost of about 25% infrastructure tax as reported
by Google [27, 53], consisting of various overheads due
to small units communicating frequently over network.
Large CSPs react by shifting the infrastructure software
into Infrastructure Processing Units (IPUs), which oper-
ate more cost effectively than traditional server CPUs
offering higher performance for workloads. While this
shifts the burden and reduces cost, this approach does
not reduce the communication cost, or provide a software

Mona Vij
Intel Labs
Hillsboro, USA

architecture eliminating the inherent overheads associ-
ated with this deployment model. Alternatively, CSPs
built special purpose environments relying on memory-
safe languages [19, 56] which require specific compiler
and runtime environments and deny their optimizations
to legacy applications.

To avoid the inherent overheads in today’s hardware
and software architecture, we suggest leveraging memory-
safe languages for performance and investigate hardware
optimizations generalize the environment. Memory-safe
languages (e.g., Rust) and runtimes (e.g., Wasm) rely on
the compiler to generate binary code preventing memory
access violations via static and runtime checks. Their
performance is comparable to native execution in case of
Rust [45] and shows moderate overheads for Webassem-
bly (Wasm) [24]. Serverless computing could benefit
from this environment by running all services in the
same process with near-zero communication cost while
being isolated from each other. At the same time, the
runtime specializes functionality to, e.g., access devices
avoiding OS overheads.

These two infliction points, the advance in serverless
computing and memory-safe languages, suggests that
we should revisit and explore a memory-safe software
and hardware architecture providing a general-purpose
runtime environment to specialize functionality when
needed and strongly isolate services. Our goal is to lever-
age memory-safe software guarantees where possible, and
describe the required hardware to further improve perfor-
mance and security. The solution needs to generalize to
legacy and memory-safe services and offer easy adoption.
We will analyze the path of a new Single Address Space
Operating System (SASOS) using Rust and Wasm, as
well as a library Operating System (library OS) allowing
multiple services to execute in parallel while also de-
pending on a traditional host OS. While this idea is not
new and was tried in industry [12, 21], we believe the
serverless and other cloud workloads demand a drastic
change in hardware and software.

By leveraging memory-safe languages our architecture
can benefit from a single memory abstraction to dras-
tically improve switching and communication between
services. This is in harsh contrast to traditional hardware
and software abstractions which rigidly isolate processes,
operating systems (OS), address spaces, and privilege
levels. To achieve this goal, services and OS functionality
execute in the same address spaces and privilege level.

VM-based

Userspace Runtime

Vahldiek-Oberwagner and Vij

Memory-Safe Software and
Hardware Architecture

[Ap | [Apr]|

|App | | [App| |App | [App|

[Aop] [Aep]

[Scheduler] [Net] |[Scheduler] [Net]

Runtime

[App] | [App]' [Scheduler]

Operating System | Operating System Operating System Operating System
Hypervisor Hypervisor Hypervisor
| cPu | [Memory| | NIC | | cPu | [Memory| | NIC | | cPu | [Memory| | NIC |

HW-based Isolation

Memory Safety-based Isolation

Figure 1. Comparison between cloud software architecture

Sharing becomes instant between a service and the OS.
Existing research [4, 10, 20, 36, 37] on improving process-
based isolation suffers from too high runtime overheads.
Research has focused on SASOS [21] and library OSes
[3, 5, 41, 46, 54, 63] as the two alternative approaches to
bridge this gap. SASOS overcome existing inefficiencies
in traditional OSes by executing the OS and the service
in the same address space while offering modularity. Re-
cent advances in memory-safe languages and runtimes
offer the building blocks to restart SASOS efforts, but
require extensive engineering effort to build a new OS
and further improvements to secure memory-safe envi-
ronments to prevent advanced attacks (e.g., transient
execution attacks [40]). In contrast, library OSes move
kernel functionality into the userspace and offer special-
ized alternatives like kernel-bypasses for networking [63].
Instead of writing an OS from scratch, library OSes focus
on a specific technique and use the host OS to support
the remaining functionality. These approaches typically
lack the support for running multiple services at the
same time while properly isolating their execution.

We discuss the main beneficiaries of MeSHwA includ-
ing microservices, FaaS and memory-bandwidth inten-
sive workloads such as machine learning. An inefficient
software architecture causes the infrastructure tax to be
up to 25% [27]. The remainder of this paper discusses
how to build and optimize MeSHwA for such workloads.

2 Background

Modern Cloud Deployments. Server applications in-
creasingly replicate functionality traditionally found in
operating systems. Their intent is to improve perfor-
mance by specializing functionality to the workload, and
provide a portable environment across operating systems
and hardware. In case of Fastly and Cloudflare [19, 56]
most functionality is executed in userspace reducing
context switch overheads and infrastructure tax. These

providers achieve this goal by executing functions in the
services together with a userspace scheduler, memory
management, and dedicated userspace network stacks.
Library OS [5, 46, 54, 63] similarly improve performance
of applications via reducing system calls and bypassing
the kernel for network and storage requests with special-
ized libraries [11]. Figure 1 shows common software and
hardware architectures of CSP deployments.

The trend to replicate functionality in the userspace
has two main drawbacks. First, applications require spe-
cialized implementations of functionality that has a stan-
dard OS interface hindering the reuse of specialized
implementations. Second, due to the added features, a
larger code base offers more opportunities to be exploited,
thereby increasing the need to isolate fault domains.

Memory-Safe Languages. Memory-safe languages and
runtimes [16, 29, 61] improve the developer productivity
and application security by eliminating memory-safety
violations such as buffer overflows [62]. While memory
safety guarantees vary, memory safe languages generally
limit any memory access of an application to a subset of
the entire address space, and can be combined control
flow integrity to avoid bypassing or altering runtime se-
curity checks. The most common forms are object-based
memory safety which enforces an access granularity on
an object-level, whereas virtual machine-based memory
safety only limits access to the memory area defined by
the virtual machine.

Recently, Rust [29] and Webassembly (Wasm) [16]
innovated the state of the art in two different directions.
Throughout this paper we refer to Rust and Wasm as a
representative for their class of memory-safe language.
Rust is a compiler-enforced memory-safe language and
instead of relying on garbage collection, relies on the
model of borrowing and ownership of memory objects.
Recent work focuses on proving security for these un-
safe environments [26], providing secure environments

MeSHwA: The case for a Memory-Safe Software and Hardware Architecture for Serverless Computing

limiting the capabilities of unsafe code [28], or isolating
components [7]. The Wasm specification describes both,
a byte code and a virtual machine executing the byte
code, providing security guarantees regarding the control
flow and memory boundaries. Recent work recognizes
the importance of memory-safe languages and suggests
their use in a moonshot project to build a novel software
architecture with supporting hardware [43].

Single Address Space OS (SASOS). Before CPUs sup-
ported multiple address spaces and page tables, OSes
were built assuming a single address space. These SASOS
relied on capability systems [8] and software fault iso-
lation [21] to isolate multiple applications and OS com-
ponents. Most recently, Microsoft with the Midori and
Singularity OS [12, 21] tried to build a SASOS to im-
prove the execution of distributed workloads and for-
mally verify security guarantees of the toolchain and
system. Additionally, CSPs more and more rely on uniker-
nels [31, 38, 54] to improve performance. The efficiency
of these systems lies in the near-zero cost of sharing
memory and low-cost context switching.

Memory-safe Library OS. Demikernel [63], Occlum [51]
FaaSm [52], or cubicleOS [48] are library OSes (library
OS) reling on memory-safe languages to reduce the at-
tack surface of the library OS and FaaS runtimes like
FaaSm [52] additionally isolate functionality using Wasm.
These efforts hint towards an environment in which most
software executes within a memory-safe environment,
either by being written in a memory-safe language (e.g.,
Rust) or being compiled to Wasm which offers sandbox
isolation guarantees.

3 Memory-Safe Software and Hardware
Architecture

In this section we provide an understanding of how
memory-safe languages and runtimes help building a
novel software runtime environment and what hardware
optimizations and features improve performance.

3.1 Isolating Services

MeSHwA relies on memory-safe languages and runtimes
to isolate memory of services, build independent fault
domains [6], and enable sharing to allow efficient use of
services within the system. The goal is to build these
abstractions without relying on traditional CPU capabil-
ities such as address space identifiers, rings, supervisor
mode or privileged instructions.

To isolate memory accesses of services, MeSHwA re-
lies on Software Fault Isolation (SFI) [59] techniques in
compilers or interpreters, or compiler-enforced object-
granular memory-safety. Since memory safety guarantees
vary between languages and runtimes, their capabilities

have to be analyzed, understood and measures taken to
ensure that each service is isolated. Recent work [7] ana-
lyzes the memory safety properties of Rust for isolating
services.

We suggest researching a unifying abstraction layer
building a foundation across languages and runtimes
providing different memory-safety properties. The differ-
ence between Rust and Wasm, for example, lies in the
ability of Rust to enforce memory safety on a per object
level as long as the type system is respected, whereas
Wasm enforces memory safety at a coarse granularity
limiting memory to the entire Wasm virtual machine
memory space. Rust’s type system helps when two Rust
implementations exchange data. In contrast, sharing
data across two independent Wasm modules requires
new techniques to make the same memory available to
both modules at the same time. Ideally, hardware and
software mechanisms enable sharing and isolation across
different languages and runtimes allowing for efficient
software-only sharing when possible and using hardware
to enforce sharing when the software mechanisms do not
enforce fine-grained memory safety.

A unified memory-safe service isolation provides the
basis for private memory in each service. In case these
techniques allow unsafe execution (no memory safety
properties during the execution), the compiler needs to
either prevent their execution or further restrict access by
deploying runtime bounds checks. To avoid control flow
vulnerabilities bypassing the memory-safety measures,
the compiler additionally needs to restrict and control
jump and call targets to the set of potential landing
targets. Both, Rust and Wasm, achieve these goals with
no or minor changes.

3.2 MeSHwA OS or library OS

We discuss two alternatives to realize MeSHwA, a memory-
safe OS and a multi-service memory-safe library OS. Our
analysis considers existing work on building Rust-based
OSes [9, 33-35]. Building a new OS provides the greatest
possible flexibility and avoids some of the existing inher-
ent overheads that traditional OSes bring. Its downside
is the additional implementation overhead and a long
path towards adoption. Alternatively, a library OS im-
plementation allows adoption in an existing environment
such as Linux. Due to the dependence on a host OS, not
all of the hardware, abstraction and scheduling optimiza-
tions can be implemented with a library OS limiting the
possible performance gain.

The main difference between the two alternatives, is
how the MeSHwA OS handles interrupts, timers, and
other low-level traditional OS functionality by itself,
whereas the library OS needs to communicate with the
hosting OS to achieve these behaviors. A prominent ex-
ample is the control over page tables which is impossible

without changes to a traditional OS from the userspace.
Page table-based optimizations will be much harder with
a library OS-based approach and their efficient setup or
modification could limit performance benefits.

System Calls and interactions. Traditionally, an appli-
cation accesses and shares information with the host or
network-connected services via the system call interface.
Our goal is to provide an extensive interface resembling
dynamic library loading rather than fixed system calls.
To allow memory-safe services to exchange information,
the memory access capabilities have to be transferred.
When two Rust services communicate, they could agree
on the same underlying type system of the exchanged
memory and continue to adhere to the memory safety
properties. Similarly, Rust’s ownership model lends itself
to this architecture to borrow the output of one service
to another. To keep track of this borrowing, a runtime
service has to keep track of the most recent owner to
ensure proper destruction of the memory once it is no
longer in use.

Today memory-safe languages do not support sharing
types systems across service domains. Each language
would have to be extended to support this type system.
With languages like Wasm, such cross-service communi-
cation is not protected by the memory safety properties
and even breaks the memory access model of Wasm
virtual machines which assume a bounded memory size.

To overcome these limitations, we suggest a software-
only based technique which offers proxy access. A proxy
access allows a service to switch to a function with
access to the shared memory object (e.g., via a list of
proxy functions accessible to the function) while not
switching the service’s context. As a result, access to the
shared memory is as quick as a function call, and such
capabilities can be arbitrarily granted by generating the
according proxy access function. A proxy-aware compiler
could generate proxy functions and translate memory
accesses into proxy functions calls to transparently switch
between the two.

Common Services. Both alternatives have to provide
common OS functionalities such as a file system, network
connections, and per service specific metadata such as
file descriptors. To allow specialization for workloads,
only a minimal substrate should be provided, and depen-
dencies should be selected by each service. The initially
needed building blocks are a service loader to enable
execution of services, and an interface for each service
to discover other services providing certain functionality.
In this regard, discovering a service is possible by name
and leads to loading a function pointer table into the
execution of the service. Any subsequent communication
happens via this function table instead of calling into the
OS via system call. As a result, a system call becomes a

Vahldiek-Oberwagner and Vij

function call instead. All the service switching mechanics,
if needed, are hidden within the function call pointers
as prepared by the only real system call to discover
other services. This design offers the most flexibility, like
microkernels [1, 17], and offers the ability to build an
abstraction layer for legacy applications mapping the
new interface to previous interfaces when needed.

As part of the discovery service, the system negoti-
ates between different memory safety properties, take
advantage of fine-grained properties, or rely on hardware-
provided capabilities to allow efficient access. For in-
stance, assuming all services and services were built in
Rust and the supply chain would provide evidence of this
fact, the system could rely on Rust’s internal type sys-
tem to protect access capabilities when services exchange
information.

3.3 Hardware implications

As discussed in previous sections, some of the tradi-
tional hardware functionalities can alternatively be pro-
vided by relying on memory safety instead. Consequently,
MeSHwA offers several avenues to further optimize hard-
ware for improved performance and security.

Address translation and caches. Traditional address
translation in CPUs relies on page tables and caches
within the CPU to reduce the number of page walks.
The translation lookaside buffer (TLB) caches recent
translations between virtual and physical memory. In
case a miss occurs, the page miss handler (PMH) walks
the actual page table to find a possible mapping. This
takes several hundred cycles to complete and requires
memory bandwidth to receive the page table entries
from memory. Services with high memory bandwidth
demands particularly suffer when frequent page walks
occur which reduce the memory bandwidth [15].

Wasm simplifies the memory model in its virtual ma-
chine specification to a linearly growing memory area.
For cloud services, the required memory size is typically
known before launch and described in deployment files.
This simplified memory layout with its allocations and
mappings can be coalesced into larger regions and ideally
mapped such that their address translation can be per-
formed statically. Such a static mapping removes entries
from the TLB lowering the pressure for most memory
accesses and avoids any page table walks, since the map-
ping is statically configured. To avoid fragmentation,
different power of 2 buckets could be created in physical
space to allocate different maximum memory sizes. Ad-
ditional research is needed to adopt these optimizations
to memory-safe-only environments and further improve
the efficiency and performance of hardware mechanisms.

MeSHwA: The case for a Memory-Safe Software and Hardware Architecture for Serverless Computing

Hardware-support for efficient memory sharing. In
MeSHwA memory-safe languages restrict memory ac-
cesses of a service and do not allow arbitrary sharing
between services limiting the efficiency of communica-
tion. To overcome this restriction, hardware and software
techniques can provide efficient ways to communicate.
Traditional OSes solve this problem via shared memory,
but MeSHwA shares all virtual memory automatically.
As a result, only the memory-safety guarantees restrict
accesses to arbitrary memory. We can ideally design
techniques to safely open this restrictive design while
maintaining the performance and security guarantees
that memory-safe languages provide.

Hardware can assist the memory safe language by
providing low level access capabilities to allow sharing
of memory when the memory safe language does not
allow such fine-grained access permissions like Wasm or
in case of Rust when the type system is not known at
compilation time.

Existing work on process-based isolation [49, 57, 58],
provides a capability-based system based on page tables.
In these systems, fine grained memory sharing is enabled
via specially crafted memory capabilities allowing mul-
tiple processes to share access to memory with other
processes.

To achieve similar sharing within the same virtual
address space, CHERI [60] or Cryptographic Comput-
ing [32] provide the ability to set capabilities from within
the same virtual address space without involvement of
the OS.

Constraining legacy applications. MeSHwA adoption
is limited by implementing new or reimplementing ex-
isting services for this architecture. Translating existing
services automatically allow faster adoption, but requires
them to become memory safe. The service needs to be
restricted to the service’ memory and control flow bound-
aries.

Wasm can be used as compilation target in common
compilers today and transform existing applications to a
virtual machine definition limiting access of the applica-
tion into a 4GB memory and providing a well-structured
control flow sufficiently restricting the application to be
used in MeSHwA system. Unfortunately, Wasm degrades
performance compared to native and requires access to
source code.

In contrast to such a software-only approach, are
hardware-based techniques [18, 22, 37, 47, 50, 55] (mostly
Intel® MPK-based) which rely on CPU features to re-
strict memory accesses. Unfortunately, these systems
require elaborate security monitors [22] and the hard-
ware features may not be readily available. As a result,
novel architecture extensions could help translate legacy
applications into MeSHwA.

4 Use Case: Microservices and Service
Meshes

MeSHwA improves the efficiency of cloud workloads.
These workloads benefit from the efficient resource shar-
ing, specialization at the OS-level or efficiently bypassing
the OS.

Several cloud services are implemented as microser-
vices, a set of functionally independent, but highly con-
nected components. These components are deployed via
an orchestration framework and connected via a service
mesh governing access between different components and
allowing to observe the behavior of the service. Existing
frameworks deploy such workloads via containers and
virtual machines completely isolating each component
from each other. In addition, service meshes [23] deploy
proxies like envoy [13], intercepting all network commu-
nication in a co-located container. As a result network
messages have to be copied between containers and OS
multiple times and objects marshaled.

To avoid this overhead, MeSHwA deploys service mesh
proxies and components in the same address space al-
lowing them to communicate and invoke each other via
shared interfaces. In addition, if components are co-
located their communication can be short-circuit as well,
and a service mesh proxy could even eliminate itself from
the communication path. As a result, we copy network
messages less and marshalling/unmarshalling may not be
necessary. Netbricks [44] suggests similar optimizations
for network functions.

5 Discussion

MeSHwA relies on memory-safe languages instead of
traditional hardware functionality and as a result, of-
fers several avenues to optimize hardware for improved
performance and security. This direction reduces the
reliance on long-used and battle-proven isolation tech-
niques. Memory-safe languages and runtimes provide cer-
tain security properties, but their capabilities are limited
with respect to hardware-based attacks and protecting
against them may incur about 2x runtime overhead [40].
CHERI [60] and Cryptographic Computing [32] offer
capability-based replacements that MeSHwA could rely
on to strengthen the security properties. Alternative,
and more light-weight approaches should be considered
like bringing back 32-bit segmentation or the RISC-V
J extension [2]. Recently, hardware-based light-weight
subprocess isolation has been an active area of research
with promising techniques like Donky [50] suggesting
a RISC-V extension similar to Intel® MPK or research
using Intel® MPK for isolation [18, 22, 55]. Additional
exploration and research in this hardware and software
co-design can bridge the gap and overcome today’s per-
formance and security limitations.

The security foundation of MeSHwA depends on the

memory-safe compilation tool chain and a small, but
important runtime component. The runtime component
needs to load services within the single address space
while respecting the security requirements of the memory-
safe language’s toolchain. Each toolchain may have dif-
ferent requirements regarding the memory layout (e.g.,
Wasm requires an 8 GB space around each module’s
heap). Some toolchains, e.g. Webassembly, lends itself
to runtime verification allowing to check binary code
for memory safety guarantees before starting to execute
t [25]. Another path to establish trust in each toolchain
is to vet and certify it, and securely record the supply
chain of the service. Before starting a service the run-
time would authenticate the trusted toolchain and the
metadata of a service [39]. Alternatively, proof-carrying-
code [42] can establish trust in the binary of a service. To
further strengthen the security and reduce the dependen-
cies, future research should explore formal verification
and trusted supply chains.

Several research prototypes [36, 40, 52, 55] run services
in the same address space to improve communication
overhead. Fastlane [30] is the first to automatically com-
bine multiple services running inside containers to be
combined into a single container. Their prototype ef-
ficiently combines Python-based services and carefully
parallelizes service invocations to improve performance.
While Fastlane proposes an interesting direction to im-
prove the current environment, it is limited to a single
language, weaker hardware isolation with limited secu-
rity guarantees. In contrast, MeSHwA focuses on the use
of memory-safe languages and leveraging hardware opti-
mizations for optimal performance and security tradeoff
between hardware and software.

6 Conclusion

Cloud workloads have shifted towards deploying small
functional units heavily communicating within a single
machine or across a set of machines leading to an unsus-
tainable infrastructure tax of about 25%. In this paper,
we hypothesize a Memory-Safe Software and Hardware
Architecture to reduce these overheads and generalize
the environment to a larger set of applications. We argue
that existing languages and runtimes provide sufficient
security guarantees to implement a MeSHwA and take
advantage of the benefits of memory-safe languages and
runtimes for these workloads. We highlight open research
questions and potential optimizations to further improve
the architecture.

Acknowledgments

We would like to thank the reviewers of SecDev’22,
WORDS’22, Nathan Dautenhan, Fangfei Yang, Shravan

Vahldiek-Oberwagner and Vij

Narayan, Mansour Alharthi and several Intel colleagues
for their insightful feedback and discussion.

References

[1] Mike Accetta, Robert Baron, William Bolosky, David Golub,
Richard Rashid, Avadis Tevanian, and Michael Young. Mach:
A new kernel foundation for UNIX development. 1986.

[2] Martin Maas RISC-V TEE Adam Zabrocki, Lee Camp-
bell and J Extension Task Groups. RISC-V Pointer
Masking proposal. https://github.com/riscv/riscv-j-
extension/blob/master/pointer-masking-proposal.adoc, 2021.
Access: 2022-5-4.

[3] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel

Stein, Klaus Satzke, Andre Beck, Paarijaat Aditya, and Volker

Hilt. Sand: Towards high-performance serverless computing.

In Proc. of the Useniz Annual Technical Conference (ATC),

2018.

Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei,

David Mazieres, and Christos Kozyrakis. Dune: Safe user-level

access to privileged CPU features. In Proc. of the USENIX

Symposium on Operating Systems Design and Implementa-

tion (OSDI), 2012.

Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman,

Christos Kozyrakis, and Edouard Bugnion. Ix: a protected

dataplane operating system for high throughput and low

latency. In Proc. of the Symposium on Operating Systems

Design and Implementation (OSDI), 2014.

D Elliott Bell and Leonard J La Padula. Secure computer sys-

tem: Unified exposition and multics interpretation. Technical

report, MITRE CORP BEDFORD MA, 1976.

[7] Anton Burtsev, Dan Appel, David Detweiler, Tianjiao Huang,
Zhaofeng Li, Vikram Narayanan, and Gerd Zellweger. Isola-
tion in Rust: What is Missing? In Proc. of the 11th Workshop
on Programming Languages and Operating Systems, 2021.

[8] Jeff Chase, Hank Levy, Miche Baker-Harvey, and Eld La-
zowska. Opal: a single address space system for 64-bit archi-
tecture address space. In Proc. of the Workshop on Worksta-
tion Operating Systems, 1992.

[9] Redox Community. Redox os. https://www.redox-os.org/,
2022. Accessed: 2022-5-4.

[10] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John
Criswell, and Vikram Adve. Nested kernel: An operating sys-
tem architecture for intra-kernel privilege separation. In Proc.
of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2015.

[11] DPDK.org. DPDK: Data Plane Development Kit. http:
//www.dpdk.org, 2022. Accessed: 2022-5-4.

[12] Joe Duffy. Blogging about Midori. http://joeduffyblog.com/
2015/11/03/blogging-about-midori/, 2015. Accessed: 2022-5-4.

[13] Envoy.io. Envoy Proxy. http://www.envoyproxy.io, 2022. Ac-
cessed: 2022-5-4.

[14] Brendan Gregg. AWS EC2 Virtualization 2017: Introducing
Nitro. https://www.brendangregg.com/blog/2017-11-29/aws-
ec2-virtualization-2017.html, 2021. Accessed: 2022-5-4.

[15] Siddharth Gupta, Atri Bhattacharyya, Yunho Oh, Abhishek
Bhattacharjee, Babak Falsafi, and Mathias Payer. Rebooting
virtual memory with midgard. In Proc. of the International
Symposium on Computer Architecture (ISCA), 2021.

[16] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L
Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon
Zakai, and JF Bastien. Bringing the web up to speed with
WebAssembly. In Proc. of the ACM SIGPLAN Conference on

4

5

6

http://www.dpdk.org
http://www.dpdk.org
http://joeduffyblog.com/2015/11/03/blogging-about-midori/
http://joeduffyblog.com/2015/11/03/blogging-about-midori/
http://www.envoyproxy.io
https://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html
https://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html

MeSHwA: The case for a Memory-Safe Software and Hardware Architecture for Serverless Computing

(17]

(18]

19]

20]

21]

(22]

23]

(24]

25]

[26]

27]

(28]

29]

(30]

(31]

(32]

Programming Language Design and Implementation (PLDI),
2017.

Per Brinch Hansen. The nucleus of a multiprogramming
system. Communications of the ACM, 13(4), 1970.
Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson,
John Criswell, Michael L. Scott, Kai Shen, and Mike Marty.
Hodor:Intra-Process Isolation for High-Throughput Data
Plane Libraries. In Proc. of the USENIX Annual Technical
Conference (ATC), 2019.

Pat Hickey. Announcing Lucet: Fastly’s native WebAssem-
bly compiler and runtime. https://www.fastly.com/blog/
announcing-lucet-fastly-native-webassembly-compiler-runtime,
2019. Accessed: 2021-7-27.

Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster,
and Mathias Payer. Enforcing least privilege memory views
for multithreaded applications. In Proc. of the ACM SIGSAC
Conference on Computer and Communications Security
(CCS), 2016.

Galen C Hunt and James R Larus. Singularity: rethinking
the software stack. ACM SIGOPS Operating Systems Review,
41(2), 2007.

Bumjin Im, Fangfei Yang, Chia-Che Tsai, Michael LeMay,
Anjo Vahldiek-Oberwagner, and Nathan Dautenhahn. The
Endokernel: Fast, Secure, and Programmable Subprocess
Virtualization. arXiv preprint arXiv:2108.03705, 2021.
Istio.org. Istio Service mesh. http://www.istio.io, 2022. Ac-
cessed: 2022-5-4.

Abhinav Jangda, Bobby Powers, Emery D Berger, and Arjun
Guha. Not so fast: Analyzing the performance of webassembly
vs. native code. In Proc. of the USENIX Annual Technical
Conference (ATC), 2019.

Evan Johnson, David Thien, Yousef Alhessi, Shravan Narayan,
Fraser Brown, Sorin Lerner, Tyler McMullen, Stefan Savage,
and Deian Stefan. [losepsiit, no nposepsiit: SFI safety for
native-compiled Wasm. In NDSS. Internet Society, 2021.
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and
Derek Dreyer. RustBelt: Securing the foundations of the Rust
programming language. Proc. of the ACM on Programming
Languages (POPL), 2017.

Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon Wei,
and David Brooks. Profiling a warehouse-scale computer. In
Proc of the International Symposium on Computer Architec-
ture (ISCA), 2015.

Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen,
Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert,
and Michael Franz. PKRU-safe: automatically locking down
the heap between safe and unsafe languages. In Proc. of the
European Conference on Computer Systems (EuroSys), 2022.
Steve Klabnik and Carol Nichols. The Rust Programming
Language (Covers Rust 2018). No Starch Press, 2019.
Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and
Arkaprava Basu. Faastlane: Accelerating Function-as-a-
Service workflows. In Proc. of the USENIX Annual Technical
Conference (ATC), 2021.

Simon Kuenzer, Vlad-Andrei Badoiu, Hugo Lefeuvre, Sha-
ran Santhanam, Alexander Jung, Gaulthier Gain, Cyril Sol-
dani, Costin Lupu, Stefan Teodorescu, Costi Raducanu, et al.
Unikraft: fast, specialized unikernels the easy way. In Proc.
of the European Conference on Computer Systems (EuroSys),
2021.

Michael LeMay, Joydeep Rakshit, Sergej Deutsch, David M
Durham, Santosh Ghosh, Anant Nori, Jayesh Gaur, Andrew
Weiler, Salmin Sultana, Karanvir Grewal, et al. Cryptographic

(33]

(34]

(35]

(36]

37]

(38]

39]

[40]

[41]

42]

[43]

[44]

(45]

[46]

Capability Computing. In Proc. of the Annual IEEE/ACM
International Symposium on Microarchitecture (Micro), 2021.
Amit Levy, Michael P Andersen, Bradford Campbell, David
Culler, Prabal Dutta, Branden Ghena, Philip Levis, and Pat
Pannuto. Ownership is theft: Experiences building an embed-
ded os in rust. In Proc. of the Workshop on Programming
Languages and Operating Systems (PLOS), 2015.

Amit Levy, Bradford Campbell, Branden Ghena, Daniel B
Giffin, Pat Pannuto, Prabal Dutta, and Philip Levis. Mul-
tiprogramming a 64kb computer safely and efficiently. In
Proceedings of the Symposium on Operating Systems Princi-
ples (SOSP), 2017.

Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto,
Prabal Dutta, and Philip Levis. The case for writing a kernel
in rust. In Proceedings of the Asia-Pacific Workshop on
Systems (APSys), 2017.

James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety,
Deepak Garg, Bobby Bhattacharjee, and Peter Druschel.
Light-Weight Contexts: An OS Abstraction for Safety and
Performance. In Proc. of the USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), 2016.
Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting memory disclosure with efficient
hypervisor-enforced intra-domain isolation. In Proc. of the
ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2015.

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos,
David Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith,
Steven Hand, and Jon Crowcroft. Unikernels: Library op-
erating systems for the cloud. ACM SIGARCH Computer
Architecture News, 41(1), 2013.

Marcela S. Melara and Mic Bowman.
oriented orchestration of microservices.
arXiw:2106.09841, 2021.

Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sun-
jay Cauligi, Evan Johnson, Zhao Gang, Anjo Vahldiek-
Oberwagner, Ravi Sahita, Hovav Shacham, Dean Tullsen,
et al. Swivel: Hardening WebAssembly against Spectre. In
Proc. of the USENIX Security Symposium (USESEC), 2021.
Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan
Appel, Zhaofeng Li, Gerd Zellweger, and Anton Burtsev.
RedLeaf: Isolation and Communication in a Safe Operating
System. In Proc. of the Symposium on Operating Systems
Design and Implementation (OSDI), 2020.

George C Necula. Proof-carrying code. In Proceedings of
the ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages (POPL), 1997.

Hamed Okhravi. A cybersecurity moonshot. IEEE Security
& Privacy, 19(3), 2021.

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia
Ratnasamy, and Scott Shenker. NetBricks: Taking the V out
of NFV. In Proc. of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2016.

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Ja-
come Cunha, Jodo Paulo Fernandes, and Jodo Saraiva. Energy
efficiency across programming languages: how do energy, time,
and memory relate? In Proc. of the ACM SIGPLAN Interna-
tional Conference on Software Language Engineering (SLE),
2017.

Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug
Woos, Arvind Krishnamurthy, Thomas Anderson, and Tim-
othy Roscoe. Arrakis: The operating system is the control
plane. ACM Transactions on Computer Systems (TOCS),
33(4), 2015.

Enabling security-
arXiv preprint

https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
http://www.istio.io

[47]

(48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed
Okhravi, and Nathan Burow. Keeping safe rust safe with
galeed. In Proc. of the Annual Computer Security Applica-
tions Conference (ACSAC, 2021.

Vasily A Sartakov, Lluis Vilanova, and Peter Pietzuch. Cu-
bicleOS: a library OS with software componentisation for
practical isolation. In Proc. of the 26th ACM International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2021.

Vasily A. Sartakov, Lluis Vilanova, Eyers David, Takahiro
Shinagawa, and Peter Pietzuch. Coffers: Capability-based
isolation and sharing for microservices. In Proc. of the Sym-
posium on Operating Systems Design and Implementation
(0SDI), 2022.

David Schrammel, Samuel Weiser, Stefan Steinegger, Mar-
tin Schwarzl, Michael Schwarz, Stefan Mangard, and Daniel
Gruss. Donky: Domain Keys—Efficient In-Process Isolation
for RISC-V and x86. In Proc. of the USENIX Security Sym-
posium (USESEC), 2020.

Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji
Wang, Yi Xu, Yubin Xia, and Shoumeng Yan. Occlum: Secure
and efficient multitasking inside a single enclave of Intel SGX.
In Proc. of the International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2020.

Simon Shillaker and Peter Pietzuch. Faasm: Lightweight
isolation for efficient stateful serverless computing. In Proc.
of the USENIX Annual Technical Conference (ATC), 2020.
Akshitha Sriraman and Abhishek Dhanotia. Accelerometer:
Understanding acceleration opportunities for data center over-
heads at hyperscale. In Proc. of the Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2020.

Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan
Jain, William Jannen, Jitin John, Harry A Kalodner, Vrushali
Kulkarni, Daniela Oliveira, and Donald E Porter. Coopera-
tion and security isolation of library OSes for multi-process
applications. In Proc. of the Furopean Conference on Com-
puter Systems (EuroSys), 2014.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte,
Michael Sammler, Peter Druschel, and Deepak Garg. ERIM:
Secure, Efficient In-process Isolation with Protection Keys
(MPK). In Proc. of the USENIX Security Symposium (US-
ESEC), 2019.

Kenton Varda. Mitigating Spectre and Other Secu-
rity Threats: The Cloudflare Workers Security Model.
https://blog.cloudflare.com/mitigating-spectre-and-other-
security-threats-the-cloudflare-workers-security-model /, 2020.
Accessed: 2021-7-27.

Lluis Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Et-
sion, and Mateo Valero. CODOMs: Protecting software with
code-centric memory domains. Proc. of the ACM SIGARCH
Computer Architecture News, 42(3), 2014.

Lluis Vilanova, Marc Jorda, Nacho Navarro, Yoav Etsion, and
Mateo Valero. Direct Inter-Process Communication (dIPC)
Repurposing the CODOMs Architecture to Accelerate IPC.
In Proc. of the European Conference on Computer Systems
(EuroSys), 2017.

Robert Wahbe, Steven Lucco, Thomas E Anderson, and
Susan L Graham. Efficient software-based fault isolation. In
Proc. of the Symposium on Operating Systems Principles
(SOSP), 1993.

Robert NM Watson, Jonathan Woodruff, Peter G Neumann,
Simon W Moore, Jonathan Anderson, David Chisnall, Nirav

[61]

(62]

(63]

Vahldiek-Oberwagner and Vij

Dave, Brooks Davis, Khilan Gudka, Ben Laurie, et al. Cheri:
A hybrid capability-system architecture for scalable software
compartmentalization. In Proc. of the IEEE Symposium on
Security and Privacy (S&P), 2015.

Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen,
Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula,
and Nicholas Fullagar. Native client: A sandbox for portable,
untrusted x86 native code. In Proc. of the IEEE Symposium
on Security and Privacy (S€P), 2009.

Google Project Zero. The More You Know, The More You
Know You Don’t Know. https://googleprojectzero.blogspot.
com/2022/04 /the-more-you-know-more-you-know-you.html,
2021. Accessed: 2022-5-4.

Irene Zhang, Jing Liu, Amanda Austin, Michael Lowell
Roberts, and Anirudh Badam. I’'m not dead yet! the role
of the operating system in a kernel-bypass era. In Proc. of
the Workshop on Hot Topics in Operating Systems (HotOS),
2019.

https://blog.cloudflare.com/mitigating-spectre-and-other-security-threats-the-cloudflare-workers-security-model/
https://blog.cloudflare.com/mitigating-spectre-and-other-security-threats-the-cloudflare-workers-security-model/
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html

	Abstract
	1 Introduction
	2 Background
	3 Memory-Safe Software and Hardware Architecture
	3.1 Isolating Services
	3.2 MeSHwA OS or library OS
	3.3 Hardware implications

	4 Use Case: Microservices and Service Meshes
	5 Discussion
	6 Conclusion
	Acknowledgments
	References

