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Abstract

Motivated by developer productivity, serverless com-
puting, and microservices have become the de facto
development model in the cloud. Microservices decom-
pose monolithic applications into separate functional
units deployed individually. This deployment model, how-
ever, costs CSPs a large infrastructure tax of more than
25% [27, 53]. To overcome these limitations, CSPs shift
workloads to Infrastructure Processing Units (IPUs) like
Amazon’s Nitro [14] or, complementary, innovate by
building on memory-safe languages and novel software
abstractions [19, 56].

Based on these trends, we hypothesize a Memory-
Safe Software and Hardware Architecture providing a
general-purpose runtime environment to specialize func-
tionality when needed and strongly isolate components.
To achieve this goal, we investigate building a single ad-
dress space OS or a multi-application library OS, possible
hardware implications, and demonstrate their capabili-
ties, drawbacks and requirements. The goal is to bring
the advantages to all application workloads including
legacy and memory-unsafe applications, and analyze how
hardware may improve the efficiency and security.

1 Introduction

Serverless computing, and microservices have recently
gained in popularity to deploy cloud services. They im-
prove developer productivity by focusing on business
logic and separating functional services. Function-as-a-
Service (FaaS) is a special form of serverless computing.
In an extreme case microservices implement functional
decomposition similar to FaaS. With FaaS offering the
smallest services, the techniques are on a spectrum for
service size. Throughout this paper we will refer to server-
less computing, microservices and FaaS interchangeably
and refer to the application as a service. Cloud Service
Providers (CSPs) run and provide the infrastructure
software connecting each service. This abstraction comes
at the cost of about 25% infrastructure tax as reported
by Google [27, 53], consisting of various overheads due
to small units communicating frequently over network.
Large CSPs react by shifting the infrastructure software
into Infrastructure Processing Units (IPUs), which oper-
ate more cost effectively than traditional server CPUs
offering higher performance for workloads. While this
shifts the burden and reduces cost, this approach does
not reduce the communication cost, or provide a software
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architecture eliminating the inherent overheads associ-
ated with this deployment model. Alternatively, CSPs
built special purpose environments relying on memory-
safe languages [19, 56] which require specific compiler
and runtime environments and deny their optimizations
to legacy applications.

To avoid the inherent overheads in today’s hardware
and software architecture, we suggest leveraging memory-
safe languages for performance and investigate hardware
optimizations generalize the environment. Memory-safe
languages (e.g., Rust) and runtimes (e.g., Wasm) rely on
the compiler to generate binary code preventing memory
access violations via static and runtime checks. Their
performance is comparable to native execution in case of
Rust [45] and shows moderate overheads for Webassem-
bly (Wasm) [24]. Serverless computing could benefit
from this environment by running all services in the
same process with near-zero communication cost while
being isolated from each other. At the same time, the
runtime specializes functionality to, e.g., access devices
avoiding OS overheads.

These two infliction points, the advance in serverless
computing and memory-safe languages, suggests that
we should revisit and explore a memory-safe software
and hardware architecture providing a general-purpose
runtime environment to specialize functionality when
needed and strongly isolate services. Our goal is to lever-
age memory-safe software guarantees where possible, and
describe the required hardware to further improve perfor-
mance and security. The solution needs to generalize to
legacy and memory-safe services and offer easy adoption.
We will analyze the path of a new Single Address Space
Operating System (SASOS) using Rust and Wasm, as
well as a library Operating System (library OS) allowing
multiple services to execute in parallel while also de-
pending on a traditional host OS. While this idea is not
new and was tried in industry [12, 21], we believe the
serverless and other cloud workloads demand a drastic
change in hardware and software.

By leveraging memory-safe languages our architecture
can benefit from a single memory abstraction to dras-
tically improve switching and communication between
services. This is in harsh contrast to traditional hardware
and software abstractions which rigidly isolate processes,
operating systems (OS), address spaces, and privilege
levels. To achieve this goal, services and OS functionality
execute in the same address spaces and privilege level.
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Figure 1. Comparison between cloud software architecture

Sharing becomes instant between a service and the OS.
Existing research [4, 10, 20, 36, 37] on improving process-
based isolation suffers from too high runtime overheads.
Research has focused on SASOS [21] and library OSes
[3, 5, 41, 46, 54, 63] as the two alternative approaches to
bridge this gap. SASOS overcome existing inefficiencies
in traditional OSes by executing the OS and the service
in the same address space while offering modularity. Re-
cent advances in memory-safe languages and runtimes
offer the building blocks to restart SASOS efforts, but
require extensive engineering effort to build a new OS
and further improvements to secure memory-safe envi-
ronments to prevent advanced attacks (e.g., transient
execution attacks [40]). In contrast, library OSes move
kernel functionality into the userspace and offer special-
ized alternatives like kernel-bypasses for networking [63].
Instead of writing an OS from scratch, library OSes focus
on a specific technique and use the host OS to support
the remaining functionality. These approaches typically
lack the support for running multiple services at the
same time while properly isolating their execution.

We discuss the main beneficiaries of MeSHwA includ-
ing microservices, FaaS and memory-bandwidth inten-
sive workloads such as machine learning. An inefficient
software architecture causes the infrastructure tax to be
up to 25% [27]. The remainder of this paper discusses
how to build and optimize MeSHwA for such workloads.

2 Background

Modern Cloud Deployments. Server applications in-
creasingly replicate functionality traditionally found in
operating systems. Their intent is to improve perfor-
mance by specializing functionality to the workload, and
provide a portable environment across operating systems
and hardware. In case of Fastly and Cloudflare [19, 56]
most functionality is executed in userspace reducing
context switch overheads and infrastructure tax. These

providers achieve this goal by executing functions in the
services together with a userspace scheduler, memory
management, and dedicated userspace network stacks.
Library OS [5, 46, 54, 63] similarly improve performance
of applications via reducing system calls and bypassing
the kernel for network and storage requests with special-
ized libraries [11]. Figure 1 shows common software and
hardware architectures of CSP deployments.

The trend to replicate functionality in the userspace
has two main drawbacks. First, applications require spe-
cialized implementations of functionality that has a stan-
dard OS interface hindering the reuse of specialized
implementations. Second, due to the added features, a
larger code base offers more opportunities to be exploited,
thereby increasing the need to isolate fault domains.

Memory-Safe Languages. Memory-safe languages and
runtimes [16, 29, 61] improve the developer productivity
and application security by eliminating memory-safety
violations such as buffer overflows [62]. While memory
safety guarantees vary, memory safe languages generally
limit any memory access of an application to a subset of
the entire address space, and can be combined control
flow integrity to avoid bypassing or altering runtime se-
curity checks. The most common forms are object-based
memory safety which enforces an access granularity on
an object-level, whereas virtual machine-based memory
safety only limits access to the memory area defined by
the virtual machine.

Recently, Rust [29] and Webassembly (Wasm) [16]
innovated the state of the art in two different directions.
Throughout this paper we refer to Rust and Wasm as a
representative for their class of memory-safe language.
Rust is a compiler-enforced memory-safe language and
instead of relying on garbage collection, relies on the
model of borrowing and ownership of memory objects.
Recent work focuses on proving security for these un-
safe environments [26], providing secure environments
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limiting the capabilities of unsafe code [28], or isolating
components [7]. The Wasm specification describes both,
a byte code and a virtual machine executing the byte
code, providing security guarantees regarding the control
flow and memory boundaries. Recent work recognizes
the importance of memory-safe languages and suggests
their use in a moonshot project to build a novel software
architecture with supporting hardware [43].

Single Address Space OS (SASOS). Before CPUs sup-
ported multiple address spaces and page tables, OSes
were built assuming a single address space. These SASOS
relied on capability systems [8] and software fault iso-
lation [21] to isolate multiple applications and OS com-
ponents. Most recently, Microsoft with the Midori and
Singularity OS [12, 21] tried to build a SASOS to im-
prove the execution of distributed workloads and for-
mally verify security guarantees of the toolchain and
system. Additionally, CSPs more and more rely on uniker-
nels [31, 38, 54] to improve performance. The efficiency
of these systems lies in the near-zero cost of sharing
memory and low-cost context switching.

Memory-safe Library OS. Demikernel [63], Occlum [51]
FaaSm [52], or cubicleOS [48] are library OSes (library
OS) reling on memory-safe languages to reduce the at-
tack surface of the library OS and FaaS runtimes like
FaaSm [52] additionally isolate functionality using Wasm.
These efforts hint towards an environment in which most
software executes within a memory-safe environment,
either by being written in a memory-safe language (e.g.,
Rust) or being compiled to Wasm which offers sandbox
isolation guarantees.

3 Memory-Safe Software and Hardware
Architecture

In this section we provide an understanding of how
memory-safe languages and runtimes help building a
novel software runtime environment and what hardware
optimizations and features improve performance.

3.1 Isolating Services

MeSHwA relies on memory-safe languages and runtimes
to isolate memory of services, build independent fault
domains [6], and enable sharing to allow efficient use of
services within the system. The goal is to build these
abstractions without relying on traditional CPU capabil-
ities such as address space identifiers, rings, supervisor
mode or privileged instructions.

To isolate memory accesses of services, MeSHwA re-
lies on Software Fault Isolation (SFI) [59] techniques in
compilers or interpreters, or compiler-enforced object-
granular memory-safety. Since memory safety guarantees
vary between languages and runtimes, their capabilities

have to be analyzed, understood and measures taken to
ensure that each service is isolated. Recent work [7] ana-
lyzes the memory safety properties of Rust for isolating
services.

We suggest researching a unifying abstraction layer
building a foundation across languages and runtimes
providing different memory-safety properties. The differ-
ence between Rust and Wasm, for example, lies in the
ability of Rust to enforce memory safety on a per object
level as long as the type system is respected, whereas
Wasm enforces memory safety at a coarse granularity
limiting memory to the entire Wasm virtual machine
memory space. Rust’s type system helps when two Rust
implementations exchange data. In contrast, sharing
data across two independent Wasm modules requires
new techniques to make the same memory available to
both modules at the same time. Ideally, hardware and
software mechanisms enable sharing and isolation across
different languages and runtimes allowing for efficient
software-only sharing when possible and using hardware
to enforce sharing when the software mechanisms do not
enforce fine-grained memory safety.

A unified memory-safe service isolation provides the
basis for private memory in each service. In case these
techniques allow unsafe execution (no memory safety
properties during the execution), the compiler needs to
either prevent their execution or further restrict access by
deploying runtime bounds checks. To avoid control flow
vulnerabilities bypassing the memory-safety measures,
the compiler additionally needs to restrict and control
jump and call targets to the set of potential landing
targets. Both, Rust and Wasm, achieve these goals with
no or minor changes.

3.2 MeSHwA OS or library OS

We discuss two alternatives to realize MeSHwA, a memory-
safe OS and a multi-service memory-safe library OS. Our
analysis considers existing work on building Rust-based
OSes [9, 33-35]. Building a new OS provides the greatest
possible flexibility and avoids some of the existing inher-
ent overheads that traditional OSes bring. Its downside
is the additional implementation overhead and a long
path towards adoption. Alternatively, a library OS im-
plementation allows adoption in an existing environment
such as Linux. Due to the dependence on a host OS, not
all of the hardware, abstraction and scheduling optimiza-
tions can be implemented with a library OS limiting the
possible performance gain.

The main difference between the two alternatives, is
how the MeSHwA OS handles interrupts, timers, and
other low-level traditional OS functionality by itself,
whereas the library OS needs to communicate with the
hosting OS to achieve these behaviors. A prominent ex-
ample is the control over page tables which is impossible



without changes to a traditional OS from the userspace.
Page table-based optimizations will be much harder with
a library OS-based approach and their efficient setup or
modification could limit performance benefits.

System Calls and interactions. Traditionally, an appli-
cation accesses and shares information with the host or
network-connected services via the system call interface.
Our goal is to provide an extensive interface resembling
dynamic library loading rather than fixed system calls.
To allow memory-safe services to exchange information,
the memory access capabilities have to be transferred.
When two Rust services communicate, they could agree
on the same underlying type system of the exchanged
memory and continue to adhere to the memory safety
properties. Similarly, Rust’s ownership model lends itself
to this architecture to borrow the output of one service
to another. To keep track of this borrowing, a runtime
service has to keep track of the most recent owner to
ensure proper destruction of the memory once it is no
longer in use.

Today memory-safe languages do not support sharing
types systems across service domains. Each language
would have to be extended to support this type system.
With languages like Wasm, such cross-service communi-
cation is not protected by the memory safety properties
and even breaks the memory access model of Wasm
virtual machines which assume a bounded memory size.

To overcome these limitations, we suggest a software-
only based technique which offers proxy access. A proxy
access allows a service to switch to a function with
access to the shared memory object (e.g., via a list of
proxy functions accessible to the function) while not
switching the service’s context. As a result, access to the
shared memory is as quick as a function call, and such
capabilities can be arbitrarily granted by generating the
according proxy access function. A proxy-aware compiler
could generate proxy functions and translate memory
accesses into proxy functions calls to transparently switch
between the two.

Common Services. Both alternatives have to provide
common OS functionalities such as a file system, network
connections, and per service specific metadata such as
file descriptors. To allow specialization for workloads,
only a minimal substrate should be provided, and depen-
dencies should be selected by each service. The initially
needed building blocks are a service loader to enable
execution of services, and an interface for each service
to discover other services providing certain functionality.
In this regard, discovering a service is possible by name
and leads to loading a function pointer table into the
execution of the service. Any subsequent communication
happens via this function table instead of calling into the
OS via system call. As a result, a system call becomes a
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function call instead. All the service switching mechanics,
if needed, are hidden within the function call pointers
as prepared by the only real system call to discover
other services. This design offers the most flexibility, like
microkernels [1, 17], and offers the ability to build an
abstraction layer for legacy applications mapping the
new interface to previous interfaces when needed.

As part of the discovery service, the system negoti-
ates between different memory safety properties, take
advantage of fine-grained properties, or rely on hardware-
provided capabilities to allow efficient access. For in-
stance, assuming all services and services were built in
Rust and the supply chain would provide evidence of this
fact, the system could rely on Rust’s internal type sys-
tem to protect access capabilities when services exchange
information.

3.3 Hardware implications

As discussed in previous sections, some of the tradi-
tional hardware functionalities can alternatively be pro-
vided by relying on memory safety instead. Consequently,
MeSHwA offers several avenues to further optimize hard-
ware for improved performance and security.

Address translation and caches. Traditional address
translation in CPUs relies on page tables and caches
within the CPU to reduce the number of page walks.
The translation lookaside buffer (TLB) caches recent
translations between virtual and physical memory. In
case a miss occurs, the page miss handler (PMH) walks
the actual page table to find a possible mapping. This
takes several hundred cycles to complete and requires
memory bandwidth to receive the page table entries
from memory. Services with high memory bandwidth
demands particularly suffer when frequent page walks
occur which reduce the memory bandwidth [15].

Wasm simplifies the memory model in its virtual ma-
chine specification to a linearly growing memory area.
For cloud services, the required memory size is typically
known before launch and described in deployment files.
This simplified memory layout with its allocations and
mappings can be coalesced into larger regions and ideally
mapped such that their address translation can be per-
formed statically. Such a static mapping removes entries
from the TLB lowering the pressure for most memory
accesses and avoids any page table walks, since the map-
ping is statically configured. To avoid fragmentation,
different power of 2 buckets could be created in physical
space to allocate different maximum memory sizes. Ad-
ditional research is needed to adopt these optimizations
to memory-safe-only environments and further improve
the efficiency and performance of hardware mechanisms.
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Hardware-support for efficient memory sharing. In
MeSHwA memory-safe languages restrict memory ac-
cesses of a service and do not allow arbitrary sharing
between services limiting the efficiency of communica-
tion. To overcome this restriction, hardware and software
techniques can provide efficient ways to communicate.
Traditional OSes solve this problem via shared memory,
but MeSHwA shares all virtual memory automatically.
As a result, only the memory-safety guarantees restrict
accesses to arbitrary memory. We can ideally design
techniques to safely open this restrictive design while
maintaining the performance and security guarantees
that memory-safe languages provide.

Hardware can assist the memory safe language by
providing low level access capabilities to allow sharing
of memory when the memory safe language does not
allow such fine-grained access permissions like Wasm or
in case of Rust when the type system is not known at
compilation time.

Existing work on process-based isolation [49, 57, 58],
provides a capability-based system based on page tables.
In these systems, fine grained memory sharing is enabled
via specially crafted memory capabilities allowing mul-
tiple processes to share access to memory with other
processes.

To achieve similar sharing within the same virtual
address space, CHERI [60] or Cryptographic Comput-
ing [32] provide the ability to set capabilities from within
the same virtual address space without involvement of
the OS.

Constraining legacy applications. MeSHwA adoption
is limited by implementing new or reimplementing ex-
isting services for this architecture. Translating existing
services automatically allow faster adoption, but requires
them to become memory safe. The service needs to be
restricted to the service’ memory and control flow bound-
aries.

Wasm can be used as compilation target in common
compilers today and transform existing applications to a
virtual machine definition limiting access of the applica-
tion into a 4GB memory and providing a well-structured
control flow sufficiently restricting the application to be
used in MeSHwA system. Unfortunately, Wasm degrades
performance compared to native and requires access to
source code.

In contrast to such a software-only approach, are
hardware-based techniques [18, 22, 37, 47, 50, 55] (mostly
Intel® MPK-based) which rely on CPU features to re-
strict memory accesses. Unfortunately, these systems
require elaborate security monitors [22] and the hard-
ware features may not be readily available. As a result,
novel architecture extensions could help translate legacy
applications into MeSHwA.

4 Use Case: Microservices and Service
Meshes

MeSHwA improves the efficiency of cloud workloads.
These workloads benefit from the efficient resource shar-
ing, specialization at the OS-level or efficiently bypassing
the OS.

Several cloud services are implemented as microser-
vices, a set of functionally independent, but highly con-
nected components. These components are deployed via
an orchestration framework and connected via a service
mesh governing access between different components and
allowing to observe the behavior of the service. Existing
frameworks deploy such workloads via containers and
virtual machines completely isolating each component
from each other. In addition, service meshes [23] deploy
proxies like envoy [13], intercepting all network commu-
nication in a co-located container. As a result network
messages have to be copied between containers and OS
multiple times and objects marshaled.

To avoid this overhead, MeSHwA deploys service mesh
proxies and components in the same address space al-
lowing them to communicate and invoke each other via
shared interfaces. In addition, if components are co-
located their communication can be short-circuit as well,
and a service mesh proxy could even eliminate itself from
the communication path. As a result, we copy network
messages less and marshalling/unmarshalling may not be
necessary. Netbricks [44] suggests similar optimizations
for network functions.

5 Discussion

MeSHwA relies on memory-safe languages instead of
traditional hardware functionality and as a result, of-
fers several avenues to optimize hardware for improved
performance and security. This direction reduces the
reliance on long-used and battle-proven isolation tech-
niques. Memory-safe languages and runtimes provide cer-
tain security properties, but their capabilities are limited
with respect to hardware-based attacks and protecting
against them may incur about 2x runtime overhead [40].
CHERI [60] and Cryptographic Computing [32] offer
capability-based replacements that MeSHwA could rely
on to strengthen the security properties. Alternative,
and more light-weight approaches should be considered
like bringing back 32-bit segmentation or the RISC-V
J extension [2]. Recently, hardware-based light-weight
subprocess isolation has been an active area of research
with promising techniques like Donky [50] suggesting
a RISC-V extension similar to Intel® MPK or research
using Intel® MPK for isolation [18, 22, 55]. Additional
exploration and research in this hardware and software
co-design can bridge the gap and overcome today’s per-
formance and security limitations.



The security foundation of MeSHwA depends on the

memory-safe compilation tool chain and a small, but
important runtime component. The runtime component
needs to load services within the single address space
while respecting the security requirements of the memory-
safe language’s toolchain. Each toolchain may have dif-
ferent requirements regarding the memory layout (e.g.,
Wasm requires an 8 GB space around each module’s
heap). Some toolchains, e.g. Webassembly, lends itself
to runtime verification allowing to check binary code
for memory safety guarantees before starting to execute
t [25]. Another path to establish trust in each toolchain
is to vet and certify it, and securely record the supply
chain of the service. Before starting a service the run-
time would authenticate the trusted toolchain and the
metadata of a service [39]. Alternatively, proof-carrying-
code [42] can establish trust in the binary of a service. To
further strengthen the security and reduce the dependen-
cies, future research should explore formal verification
and trusted supply chains.

Several research prototypes [36, 40, 52, 55] run services
in the same address space to improve communication
overhead. Fastlane [30] is the first to automatically com-
bine multiple services running inside containers to be
combined into a single container. Their prototype ef-
ficiently combines Python-based services and carefully
parallelizes service invocations to improve performance.
While Fastlane proposes an interesting direction to im-
prove the current environment, it is limited to a single
language, weaker hardware isolation with limited secu-
rity guarantees. In contrast, MeSHwA focuses on the use
of memory-safe languages and leveraging hardware opti-
mizations for optimal performance and security tradeoff
between hardware and software.

6 Conclusion

Cloud workloads have shifted towards deploying small
functional units heavily communicating within a single
machine or across a set of machines leading to an unsus-
tainable infrastructure tax of about 25%. In this paper,
we hypothesize a Memory-Safe Software and Hardware
Architecture to reduce these overheads and generalize
the environment to a larger set of applications. We argue
that existing languages and runtimes provide sufficient
security guarantees to implement a MeSHwA and take
advantage of the benefits of memory-safe languages and
runtimes for these workloads. We highlight open research
questions and potential optimizations to further improve
the architecture.
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