
Building High-performance Tree Indexes on Disaggregated Memory

Qing Wang, Youyou Lu, and Jiwu Shu
Tsinghua University

1 Motivation
Traditional datacenters pack CPU and memory into the same
hardware units (i.e., monolithic servers), leading to low mem-
ory utilization (< 65%) [3]. To attack this problem, academia
and industry are exploring a new hardware architecture called
memory disaggregation, where CPU and memory are phys-
ically separated into two different hardware units: compute
servers (CSs) and memory servers (MSs). With memory dis-
aggregation, CPU and memory can scale independently and
applications can pack resources in a more flexible manner,
boosting resource utilization. In this paper, we explore how
to build a performant tree index on disaggregated memory.
Assumptions. Similar to prior work, we make two assump-
tions on the memory disaggregation architecture. First, CSs
leverage high-speed RDMA networks to directly access the
disaggregated memory in MSs. Second, MSs have near-zero
computation power, 1 or 2 wimpy CPU cores, to support
lightweight management tasks, such as network connection
management and disaggregated memory allocation.
Problems. We revisit existing RDMA-based tree indexes and
examine their applicability on disaggregated memory. Several
RDMA-based tree indexes rely on remote procedure calls
(RPCs) to handle write operations [2,5]; they are ill-suited for
disaggregated memory due to near-zero computation power of
MSs. For tree indexes that can be deployed on disaggregated
memory, they also have some critical limitations: À Some
indexes using RDMA one-sided verbs for all index opera-
tion [6] (we call it one-sided approach); they can deliver high
performance for read operations, but suffer from low through-
put and high latency in terms of write operations, especially
in high-contention scenarios (< 0.4 Mops with ~20ms tail
latency). Á Other indexes bake write operations into Smart-
NICs or customized hardware [1], which brings high TCO
and is not immediately deployable.
Our Goal. Our goal is designing a tree index on disaggregated
memory that can deliver high performance for both read and
write operations with commodity RDMA NICs.
Analysis. The following three reasons contribute to the ineffi-
ciency of one-sided approaches.

1. Excessive round trips. Due to limited semantics of one-
sided RDMA verbs, modifying an index node (e.g., tree node
in B+Tree) always requires multiple round trips (i.e., lock,
read, write, and unlock), inducing high latency and further
making conflicting requests more likely to be blocked.

2. Slow synchronization primitives. The RDMA locks
used for resolving write-write conflicts are slow and expe-
rience performance collapse under high-contention scenarios.

Local Lock Table

Index Cache

Client Threads

RDMA NIC Memory

Global Lock Table

z

Memory

RDMA NIC Memory

Global Lock Table

z

Memory zSherman Tree

Search/Insert/DeleteCompute Servers (CSs)
Memory Servers (MSs)

zzz

child pointer
sibling pointer

Level 0

Level 1

Local Lock Table

Index Cache

Client Threads

Figure 1: SHERMAN’s architecture and interactions.

This is because that, to guarantee correct semantic between
conflicting RDMA atomic commands, RDMA NICs adopt an
internal locking scheme to serialize conflicting atomic com-
mands. Unfortunately, an atomic command has a long critical
path: two PCIe transactions at receiver side. Moreover, at the
software level, such locks always trigger unnecessary retries,
which consumes RDMA IOPS, and do not provide fairness,
which leads to high tail latency.

3. Write amplification. In order to read tree nodes in a
lock-free way and detect incomplete data due to ongoing
writes, two main consistency check mechanisms are proposed.
In the first mechanism, each node includes a checksum cov-
ering the whole node area (except the checksum itself) [6];
the checksum is re-calculated when modifying the associated
node, and is verified when reading the node. The other mech-
anism, namely version-based consistency check, stores a ver-
sion number at the start and end of each node [2]; when modi-
fying a node via RDMA_WRITE, the corresponding two version
are incremented; a node’s content obtained via RDMA_READ
is consistent only when the two versions are the same. Since
the granularity of the above two mechanisms is tree node, any
modification to part of the node area requires to write back
the whole node (include the metadata, e.g., checksum and
version), leading to severe write amplification.

2 SHERMAN Design
We design SHERMAN1, a high-performance B+Tree on dis-
aggregated memory. Figure 1 shows its overall architecture.
CSs run client threads that manipulate SHERMAN (residing
in MSs) via one-sided RDMA commands.
B+Tree Structure. In SHERMAN, we record a sibling pointer
for every leaf node and internal node as in the B-link tree.

1Move details of SHERMAN can be found in the original paper [4]. SHER-
MAN is open-source at: https://github.com/thustorage/Sherman.

1

https://github.com/thustorage/Sherman


Client threads can always reach a targeted node by following
these sibling pointers in the presence of node split/merging,
thus supporting concurrent operations efficiently. To reduce
remote accesses in the tree traversal, each CS maintains an
index cache, which makes internal nodes’ copies.
Concurrency Control. SHERMAN uses node-grained exclu-
sive locks to resolve write-write conflicts: before modifying
a tree node, the client thread must acquire the associated
exclusive lock. SHERMAN supports lock-free search, which
leverages RDMA_READ to fetch data residing in MSs without
holding any lock. Moreover, SHERMAN uses versions to de-
tect inconsistent data caused by concurrent writes.
2.1 Hierarchical On-Chip Lock
To accelerate lock operations, we design a hierarchical on-
chip lock (HOCL) for SHERMAN. HOCL is structured into
two parts: global lock tables on MSs, and local lock tables
on CSs. Global lock tables and local lock tables coordinate
conflicting lock requests between CSs and within a CS, re-
spectively. Global lock tables are stored in the on-chip SRAM
of RDMA NICs, thus eliminating PCIe transactions of MSs
and further delivering extremely high throughput for RDMA
atomic commands (~110 Mops). Within a CS, before trying
to acquire a global lock on MSs, a thread must acquire the
associated local lock, so as to avoid a large amount of un-
necessary remote retries. Moreover, by adopting wait queues,
local lock tables improve fairness between conflicting lock
requests. Based on local lock tables, a thread can hand its
acquired lock over to another thread directly, reducing at least
one round trip for acquiring global locks.
2.2 Command Combination
To reduce round trips, we introduce a command combination
technique. Based on the observation that RDMA NICs already
provide in-order delivery property, this technique allows client
threads to issue dependent RDMA commands (e.g., write-
back and lock release) simultaneously, letting NICs at MSs
reflect them into disaggregated memory in order.
2.3 Two-Level Version
To mitigate write amplification, SHERMAN tailors the leaf
node layout of B+Tree. First, entries in leaf node are unsorted,
so as to eschew shift operations upon insertion/deletion. Sec-
ond, to support lock-free search while avoiding write am-
plification, we introduce a two-level version mechanism. In
addition to using a pair of node-level versions to detect the
inconsistency of the whole leaf node, we embed a pair of
entry-level versions into each entry, which ensures entry-level
integrity. For insertion/deletion operations without split/merg-
ing events, only entry-sized data is written back, thus saving
network bandwidth and making the most of the extremely
high IOPS of small RDMA messages.
3 Evaluation
Our cluster consists of 8 servers, each of which is equipped
with 128GB DRAM, two 2.2GHz Intel Xeon E5-2650
v4 CPUs (24 cores in total), and one 100Gbps Mellanox
ConnectX-5 NIC. We emulate each server as one MS and one

Th
ro

ug
hp

ut
 (M

op
s)

La
te

nc
y 

(μ
s)

P99 Latency P50 LatencyThroughput
(a) write-intensive

0

2

4

6

8

101

102

103

104

FG+
+Combine

+On-Chip

+Hierarchical

+2-Level Ver

Th
ro

ug
hp

ut
 (M

op
s)

(b) read-intensive

La
te

nc
y 

(μ
s)

0

10

20

30

5

10

15

20

FG+
+Combine

+On-Chip

+Hierarchical

+2-Level Ver

Figure 2: Overall performance.

CS. Each MS owns 64GB DRAM and 2 CPU cores, and each
CS owns 1GB DRAM and 22 CPU cores.

We compare SHERMAN with FG [6], which is the only
distributed B+Tree that supports disaggregated memory. For
fair comparison, we add index cache for FG (called FG+).
Each CS owns 500MB index cache, and launches 22 client
threads (176 in total in our cluster). For each experiment, we
bulkload the tree with 1 billion entries (8-byte key, 8-byte
value) 80% full, then perform specified workloads. The size
of a tree node (i.e., internal node and leaf node) is 1KB.

To analyze SHERMAN’s performance, we break down the
performance gap between FG+ and SHERMAN through ap-
plying each technique one by one. Figure 2 shows the results
under skewed workloads (0.99 Zipfian parameter). In write-
intensive workloads (50% insert and 50% lookup), SHERMAN
achieves 23.6× higher throughput with 1.4×/ 30.2× lower
50p/99p latency. All techniques contribute to the high write ef-
ficiency of SHERMAN. In read-intensive workloads (5% insert
and 95% lookup), SHERMAN does not present considerable
performance improvement, as expected, since all techniques
we propose aim to boost write performance.

References
[1] M. K. Aguilera, K. Keeton, S. Novakovic, and S. Singhal. Designing

far memory data structures: Think outside the box. In Proceedings of
the Workshop on Hot Topics in Operating Systems, HotOS ’19, page
120–126, New York, NY, USA, 2019. ACM.

[2] C. Mitchell, K. Montgomery, L. Nelson, S. Sen, and J. Li. Balancing
cpu and network in the cell distributed b-tree store. In Proceedings of
the 2016 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC ’16, page 451–464, USA, 2016. USENIX Association.

[3] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. Legoos: A disseminated,
distributed os for hardware resource disaggregation. In Proceedings of
the 13th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’18, page 69–87, USA, 2018. USENIX Association.

[4] Q. Wang, Y. Lu, and J. Shu. Sherman: A write-optimized distributed
b+tree index on disaggregated memory. In Proceedings of the 2022
International Conference on Management of Data, SIGMOD ’22, page
1033–1048, New York, NY, USA, 2022. ACM.

[5] X. Wei, R. Chen, and H. Chen. Fast rdma-based ordered key-value
store using remote learned cache. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 117–
135. USENIX Association, Nov. 2020.

[6] T. Ziegler, S. Tumkur Vani, C. Binnig, R. Fonseca, and T. Kraska. De-
signing distributed tree-based index structures for fast rdma-capable
networks. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD ’19, page 741–758. ACM, 2019.

2


	Motivation
	Sherman Design
	Hierarchical On-Chip Lock
	Command Combination
	Two-Level Version

	Evaluation

