
No Provisioned Concurrency:
Fast RDMA-codesigned Remote
Fork for Serverless Computing

Xingda Wei, Fangming Lu, Tianxia Wang,
Jinyu Gu, Yuhan Yang, Rong Chen, and Haibo Chen

WORDS’22

Serverless computing: a new paradigm

How to abstract the user code? Function (FaaS)

The developers package their code into function
❑ Functions are encapsulated into containers

Functions are executed via auto-scaled containers

Containers are spawned on-demand based on requests
❑ The platform will assign a unique URL for each function for the request naming

hello http://hello.default.example.com

Name Function URL

User

curl –H
http://hello.default.example.com

API Gateway Machines

① Start the container

② Run function

③ Kill container

Function request

The benefits

Ease of development
❑ No need to worry how to deploy applications on servers

High resource utilizations
❑ Containers only run when there is workloads

Economical efficiency
❑ Less paid by the user, more resource used by the platform

The benefits at what cost? Function coldstart

Function invocation requires booting a container from scratch
❑ Contains multiple steps to prepare the function executing environment

Unfortunately, serverless functions are ephemeral
❑ E.g., 67% of the functions execute within 20ms [Lambda@Edge]

Dispatch Docker pull

100-1000ms

Init container

50 – 100ms

Init runtime

50 – 100ms

Function!

1 – 200ms

① Start container ② Run function

2ms

Solution#1: Cache runned containers (warmstart)

After running the functions, don’t kill the runned containers
❑ Cache it in the machine’s memory for future usage

❑ E.g., via docker pause

User

curl –H
http://hello.default.example.com

API Gateway

① Start container

② Run function

③ Kill container

Function request

Pause the container at
the machine

Machine

Solution#1: Cache runned containers (warmstart)

Future invocations can reuse cached instance
❑ If a container for the function is cached, then start function from it

❑ E.g., via docker unpause

User

curl –H
http://hello.default.example.com

API GatewayFunction request

① Find a cached one

② Unpause it

③ Run the function

④ Pause again

Machine

Warmstart is fast (near optimal in performance)

② Run function

Dispatch Docker pull

2ms 100-1000ms

Init container

50 – 100ms

Init runtime

50 – 100ms

Function!

1 – 200ms

① Start container

Dispatch Find cache

2ms 100-1000s

Unpause

1ms

Function!

1 – 200ms1ms

① Start container ② Run function Warm vs. cold:
2ms vs.

1000ms+

Challenge of caching: provisioned concurrency

Need cache sufficient (O(n)) containers beforehand

❑ One cached container can only be unpaused for one invocation

Meanwhile, real workload exists concurrent function invocations
❑ E.g., loadspikes may appear in real workloads [Serverless in the wild@ATC’20]

① Find a cached one

② Unpause it

③ Run the function

④ Pause again

What if the one
has been used?
Fallback to cold

Real-world function traces from Azure function.
Source: Serverless in the wild@ATC’20

Goal: warmstart + no provisioned concurrency

Insight: No provisioned concurrency
❑ Users only need to tell the platform whether it needs to prevent coldstart

❑ Not tell how many, e.g.,we only need O(1) resource provisioned all the time

Existing platforms require users to specific the number of cached
instances (provisioned concurrency) to improve performance.
Source: https://aws.amazon.com/cn/blogs/aws/new-provisioned-

concurrency-for-lambda-functions/

…
How many containers

to cache?

Solution#2: Caching + Fork

Use OS Fork to start new containers from one cached containers [1]

❑ One container (parent) can be forking many times

❑ Reduce the provisioned concurrency from O(n) -> O(1) on a single machine

❑ Still reduce many steps in coldstart

User

curl –H
http://hello.default.example.com

API GatewayFunction request

① Find a cached one

② Unpause it Fork it!

③ Run the function

④ Kill the forked
container

Not unpause it,

fork it!

FORK
NAME

fork – create a new process

fork

[1] Catalyzer: Sub-millisecond Startup for Serverless Computing with
Initialization-less Booting, ASPLOS’20

Limitation of Fork: cannot scale out

Question: what if functions need to run across machines?
❑ Fork can only achieve O(1) resource provisioned on a single machine

❑ Still requires O(m) resource provisioned considering scale out!

m: number of machines to run functions

Gateway

Function requests Machines (m)

All machines must cache O(1) instances

This work: Fast remote fork for serverless computing

Observation: remote fork achieves true “no provisioned concurrency”

❑ One cached container (O(1)) can fork multiple instances even across machines

Gateway

Function requests Machines (m)

remote fork Challenge: how to realize remote fork efficiently?

Machine with the cached instance

Existing remote fork: Checkpoint & Restore (C/R)

0

500

1000

1500

2000

1 4 8 16 32 64 128
256

512
1024

Parent container memory (MB)

Basic C/R for remote fork

C/R Warmstart Coldstart

Function time (ms)Checkpoint (C)
❑ Checkpoint the parent (P) states to a file

Restore (R)
❑ Transfer the file to the child machine

❑ Restore the parent from the file

P

C
Network

Transfer
e.g., remote file copy

R
Evaluation setup: CRIU for C/R,
file is transferred via RDMA and is stored
in-memory

1) Checkpoint the
parent is costly

2) Transfer the whole
file is costly

Optimization: Using C/R + distributed file system (DFS)

Checkpoint (C)
❑ Checkpoint the parent (P) states to a file

Restore (R)
❑ Transfer the file to the child machine

❑ Restore the parent from the file

P

DFS
e.g., Ceph

C

Network

R

0

500

1000

1500

2000

2500

3000

1 4 8 16 32 64 128
256

512
1024

Parent container memory (MB)

Basic C/R + DFS

C/R Warmstart Coldstart

Function time (ms)

Evaluation setup: CRIU for C/R,
file is stored in Ceph, a state-of-the-art
RDMA-enabled DFS, file is in-memory

1) Still need
Checkpoint overhead

2) Slow restore due
to overhead of DFS

Key problem: OS cannot access remote memory

Thus, the child needs the filesystem to access the remote memory
❑ Filesystem essentially pays the overhead of checkpoint & file accesses

P C

Page Table Page Table

Remote fork

Physical
memory

Network

？

Checkpoint Transfer Restore

Access

This work: OS remote memory for fast remote fork

The OS provides remote memory abstraction for remote fork
❑ E.g., directly use kernel-space RPC to fetch the memory bypassing the filesystem

Benefits
❑ Avoid the costly checkpoint phase

❑ Avoid the filesystem overhead in reading the remote data

P C

Page Table Page Table

Remote fork

Physical
memory

Access

RPC

Network

This work: OS remote memory for fast remote fork

Extend the OS to directly access the memory of remote machines

❑ Then implement remote fork by imitating local fork w/ remote memory accesses

0

600

1200

1800

2400

3000

1 4 8 16 32 64 128
256

512
1024

Parent container memory (MB)

OS Remote fork + RPC

C/R OS-fork

Warmstart Coldstart

Function time (ms)

Avoid checkpoint, but still pays high overhead
when using RPC to read the memory

37% improvements

Further accelerate OS remote memory: RDMA!

Observation: modern datacenter interconnects RDMA
❑ RDMA provides high bandwidth (400Gbps) & low latency (2μs) remote memory access

❑ The OS can directly access the physical memory of the others via RDMA [1]

[1] LITE Kernel RDMA Support for Datacenter Applications, SOSP’17

0

500

1000

1500

2000

1 4 8 16 32 64 128
256

512
1024

Parent container memory (MB)

OS Remote fork + RPC

OS-fork Warmstart Coldstart

Function time (ms)

0

500

1000

1500

2000

1 4 8 16 32 64 128
256

512
1024

Parent container memory (MB)

OS Remote fork + RDMA

OS-fork Warmstart Coldstart

Function time (ms)

Roadmap to the fast remote fork

0

500

1000

1500

2000

1 8 32 128
512

Remote fork

Warmstart

Coldstart

Function time (ms)

0

500

1000

1500

2000

2500

3000

1 8 32 128
512

Remote fork

Warmstart

Coldstart

Function time (ms)

0

500

1000

1500

2000

2500

1 8 32 128
512

Remote fork

Warmstart

Coldstart

Function time (ms)

0

500

1000

1500

2000

2500

1 8 32 128
512

Remote fork

Warmstart

Coldstart

Function time (ms)

Parent container memory accessed by the child (MB)

Basic C/R + DFS + OS support for
remote memory

+ RDMA

MITOSIS

OS support remote fork + RDMA for accelerating data accesses
❑ OS fork -> reduce overhead to checkpoint the memory into files

❑ RDMA -> optimal performance in accessing child memory

Compatible w/
containers
e.g., runC

Forking 10,000+ containers
within one second

Accelerate serverless coldstart
Reduce tail latency by 90% under loads pikes

fast RDMA-OS codesigned remote fork

Efficiency under loads pikes

Evaluate platform: Fn

Requests generated
from real-world traces[1]

[1] Serverless in the Wild: Characterizing and Optimizing the Serverless Workload
at a Large Cloud Provider@ATC’20

0

200

400

600

800

1000

1200

1400

0 0.5 1 1.5 2 2.5 3

0

20

40

60

80

100

1 10 100 1000 10000 100000

Caching mitosisCDF(%) Per-machine memory usage

Timeline (minute)Latency (ms)

Caching will keep-alive 30 secs

High tail latency caused by coldstart

One more thing: fork for serialization-free state transfer

Serverless workflow can compose multiple functions together
❑ While functions use message passing (MP) or cloud storage (CS) for state transfer

Both MP & CS have serialization & memory copy overhead

❑ Can attributes to 95% of the total function execute time[1]

A B

[1] Faastlane: Accelerating function-as-a-service workflows, ATC’21

Function Function

Cloud storage (e.g., S3)

Data Data

Fork for serialization-free state transfer

Suppose we want to run functions A & B
❑ Where B accesses data generated from A

If we fork B from A using MITOSIS, B can
❑ Transparently inherit A’s data w/o serialization and memory copy!

A B
Remote fork

Data

FINRA time
(ms)

rules of FINRA

LoadData
RunRule #1

RunRule #2

RunRule #n

Simplified workflow
in real-world
Serverless applications[1]

[1] https://aws.amazon.com/cn/solutions/case-studies/finra-data-validation/

…
0

500

1000

1500

2000

2500

3000

1 10 40 80 100 120 160 200

Fn MITOSIS C/R+DFS C/R

More about MITOSIS, check our pre-print!

Detailed remote fork design & implementations
❑ Various tricks to make the fork fast, e.g. ,prefetch, generalized lean container, etc.

Memory protection & parent resource management

Integrations w/ serverless platforms
❑ For fast autoscale & state transfer

Limitations & future work

Pre-print available at:
https://arxiv.org/abs/2203.10225

Conclusion, Thanks & QA

MITOSIS: Fast remote fork design & implementation
❑ With a codesign between OS and RDMA

Achieve no provisioned concurrency for serverless functions
❑ Fork 10,000+ containers within one second across 5 machines

Achieve fast state transfer between functions
❑ With no memory copy & data serialization & deserialization overhead

Publicly available at:

https://github.com/ProjectMitosisOS/ProjectMitosisOS

