|

v 11 IPADS

11V 5

No Provisioned Concurrency:
Fast RDMA-codesigned Remote
Fork for Serverless Computing

Xingda Wei, Fangming Lu, Tianxia Wang,
Jinyu Gu, Yuhan Yang, Rong Chen, and Haibo Chen

Serverless computing: a new paradigm

Developer’s view w/o serverless serverless

@@@

How to abstract the user code? Function (Faa$S)

The developers package their code into function

J Functions are encapsulated into containers

P— serverless

R‘-’ — 7[><

program w function

Functions are executed via auto-scaled containers

Containers are spawned on-demand based on requests

1 The platform will assign a unique URL for each function for the request naming

Name Function URL
http://hello.default.example.com

— (1) Start the container
@ _J @ Run function
User { @ Kill container

~——

curl -H L= L= :
http://hello.default.example.com
o o—b—o0 o—b—o0

}\, Function request APl Gateway Machines 4

The benefits

Ease of development

] No need to worry how to deploy applications on servers

High resource utilizations

] Containers only run when there is workloads

Economical efficiency

] Less paid by the user, more resource used by the platform

The benefits at what cost? Function coldstart

Function invocation requires booting a container from scratch

1 Contains multiple steps to prepare the function executing environment

Unfortunately, serverless functions are ephemeral

4 E.g., 67% of the functions execute within 20ms [Lambda@Edge]

0 /\ ; (1) Start container ® Run function

A A
o—b—o [\ [\

100-1000ms |50 — 100ms |50 — 100ms [JESPTII

Dispatch Docker pull Init container Init runtime Function!

Solution#1: Cache runned containers (warmstart)

After running the functions, don’t kill the runned containers
 Cache it in the machine’s memory for future usage

4 E.g,viadocker pause

— (1) Start container
@ _J @ Run function
User (@) Kill container

~——

curl -H %” Pause the container at
) S gock .
http://hello.default.example.com — \thes machine

}\, Function request APl Gateway Machine

Q
Y

Solution#1: Cache runned containers (warmstart)

Future invocations can reuse cached instance
1 If a container for the function is cached, then start function from it

d E.g., via docker unpause

— (@ Find a cached one
@ _J (@ Unpause it
User (@ Run the function
| & @ Pause again
curl -H N > docker
http://hello.default.example.com

Q

L o—b—o0
}\, Function request APl Gateway Machine

Warmstart is fast (near optimal in performance)

@

Dispatch

/7N

@

2ms

Dispatch

(1 Start container @ Run function

A
[| [A |

1 — 200ms

Find cache Unpause Function!

PN

(1) Start container
A

Warm vs. cold:

2ms Vs.
1000ms+

® Run function
|

o—b—o

[|
100-1000ms |50 — 100ms 50 — 100ms RIS

[|

Docker pull Init container Init runtime Function!

Challenge of caching: provisioned concurrency

Need cache sufficient (O(n)) containers beforehand

] One cached container can only be unpaused for one invocation

Meanwhile, real workload exists concurrent function invocations

 E.g., loadspikes may appear in real workloads [Serverless in the wild@ATC20]

Real-world function traces from Azure function.

What if the one . Source: Serverless in the wild@ATC'20
Find a cached one

has been used?
- Func 660323

Fallback to cold/: @ Unpause it %180

A @ Run the function £ 120

A\ = L) (@ Pause again 2 60| A &

—> © A
7\/ 9 ! 0 ! |
0 200 400 600 80 10

Time (minute)

Goal: warmstart + no provisioned concurrency

docked o
ocker%
a——
———

Configure provisioned concurrency

How many containers
to cache?

Provisioned concurrency

Qualifier type
You can configure provisioned

O Alias

Existing platforms require users to specific the number of cached
instances (provisioned concurrency) to improve performance.

Source: https://aws.amazon.com/cn/blogs/aws/new-provisioned-
concurrency-for-lambda-functions/

Insight: No provisioned concurrency
] Users only need to tell the platform whether it needs to prevent coldstart

2 Not tell how many, e.g., we only need O(1) resource provisioned all the time
11

FORK
Solution#2: Caching + Fork NAME

Use OS Fork to start new containers from one cached containers 1]

- One container (parent) can be forking many times

1 Reduce the provisioned concurrency from O(n) -> O(1) on a single machine

) Still reduce many steps in coldstart

Not unpause it,
fork it!

~

}\, Function request APl Gateway

[1] Catalyzer: Sub-millisecond Startup for Serverless Computing with
Initialization-less Booting, ASPLOS'20

8D -

container

curl -H
http://hello.default.example.com — o — o
\l N T

& & &

docker docker docker

fork — create a new process

— (1) Find a cached one

/1 (@ Unpause it Fork it!

@ Run the function
@ Kill the forked

12

Limitation of Fork: cannot scale out

Question: what if functions need to run across machines?

4 Fork can only achieve O(1) resource provisioned on a single machine
2 Still requires O(m) resource provisioned considering scale out!
m: number of machines to run functions

All machines must cache O(1) instances

7\4 7\/ 7\. 0 (;?k; :j?k‘; é?ﬁ ?kfr [docker
7 — — — — —
A= = Gateway —> — — = —
Function requests Machines (m)

14

This work: Fast remote fork for serverless computing

Observation: remote fork achieves true “no provisioned concurrency”

2 One cached container (O(1)) can fork multiple instances even across machines

T~

Challenge: how to realize remote fork efficiently?

'//\\\
Qo

7\’ 7\’ }\’ docker docker docker docker docker
AA K 7 = = = = =

G —— —— — = =
obo0 obo

Machine with the cached instance

Function requests Machines (m)

Existing remote fork: Checkpoint & Restore (C/R)

Checkpoint (C)

[- Checkpoint the parent (P) states to afile]

Restore (R)

[Transfer the file to the child machine

] Restore the parent from the file

p | &

/ docker w

Transfer Ij

e.g., remote file copy

Function time (ms) Basic C/R for remote fork
2000
-C/R -©-Warmstart -A-Coldstart
1500
2) Transfer the whole
1000 file is costly
500 1) Checkpoint the
parent is costly
0 O e 2 = == - - - - a é

S ¥ & o Py O, Iy e O,
c T Y s o 097
Parent container memory (MB)

Evaluation setup: CRIU for C/R,
file is transferred via RDMA and is stored
in-memory 16

Optimization: Using C/R + distributed file system (DFS)

Checkpoint (C) Function time (ms) Basic C/R + DFS
 Checkpoint the parent (P) states to afile 3000
[] 2 ™ 2) Sl tored
ow restore due
Restore (R) 2000 to overhead of DFS
: 1500
[] Restore the parent from the file] 1000 1) Still need
00 Checkpoint overhead

O % .S zs = = a 4
p [&
S ¥ & I Gy O, Iy o O,
docker c P Y RS 5 097
/ Parent container memory (MB)
R

c Evaluation setup: CRIU for C/R,
DFS file is stored in Ceph, a state-of-the-art
e.g., Ceph RDMA-enabled DFS, file is in-memory 17

Key problem: OS cannot access remote memory

Thus, the child needs the filesystem to access the remote memory

) Filesystem essentially pays the overhead of checkpoint & file accesses

Remote fork 4 Access
C| Ef LT

? Page Table

5 Restore

p &

docker

Page Table

Physical
memory

—
=

Transfer

Checkpoi@

19

This work: OS remote memory for fast remote fork

The OS provides remote memory abstraction for remote fork
1 E.g., directly use kernel-space RPC to fetch the memory bypassing the filesystem

Benefits
1 Avoid the costly checkpoint phase

1 Avoid the filesystem overhead in reading the remote data

Remote fork Access
P ‘@ :> C ﬁ
docker ||

Page Table w Page Table
Physical
memory []]] ——= — RPC — 20

This work: OS remote memory for fast remote fork

Extend the OS to directly access the memory of remote machines

1 Then implement remote fork by imitating local fork w/ remote memory accesses

Function time (ms)

3000
2400
1800
1200

600

OS Remote fork + RPC

-*-C/R -©-0S-fork

.-Warmstart —e—Coldstart

Parent container memory (MB)

} 37% improvements

Avoid checkpoint, but still pays high overhead

when using RPC to read the memory

21

Further accelerate OS remote memory: RDMA!

Observation: modern datacenter interconnects RDMA
J RDMA provides high bandwidth (400Gbps) & low latency (2us) remote memory access

1 The OS candirectly access the physical memory of the others via RDMA 1]

Function time (ms) |0s Remote fork + RPC Function time (ms) |0s Remote fork + RDMA
2000 2000
-*%-(0OS-fork -e-Warmstart -A-Coldstart -2 0OS-fork -e-Warmstart -A-Coldstart
1500 1500
1000 1000
500 500 A—A—A—A—A—&
0 ©c—© 0 R—x—= c—e——e—9
S T B e Oy O, Iy P O, S T B e Py O, Iy P S,
oY W N Vg o oYW % Ny oGy

Parent container memory (MB) Parent container memory (MB)

[1] LITE Kernel RDMA Support for Datacenter Applications, SOSP’17

Roadmap to the fast remote fork 9

Basic C/R Z> + DFS Z> = OB A oioeln el Z> + RDMA
remote memory

Function time (ms) Function time (ms) Function time (ms) Function time (ms)
2000 - Remote fork 3000 —Remote fork 2500 ¢ Remote fork 2500 —%-Remote fork
2500
1500 -o-Warmstart 2000 -S-Warmstart 2000 -S-Warmstart 2000 -S-Warmstart
1500 1500
1000 -A-Coldstart 1500 -A-Coldstart —4-Coldstart —4-Coldstart
N 1000 1000
500 500
0] 0 0

Parent container memory accessed by the child (MB)

MITOSIS fast RDMA-OS codesigned remote forkO\@

OS support remote fork + RDMA for accelerating data accesses
] OSfork -> reduce overhead to checkpoint the memory into files

1 RDMA -> optimal performance in accessing child memory

Compatible w/
C%ntainers Forking 10,000+ containers
e.g., runC ’ within one second

%fn Accelerate serverless coldstart
Reduce tail latency by 90% under loads pikes 24

Func 660323

2180
Efficiency under loads pikes g120 | Requests generated
2 g | H l | from real-world traces[1]
S Ll .
Evaluate platform: Fn g 2°$.me4?n?nut§;)° =
CDF(%) —Caching —mitosis Per-machine memory usage
1o o Cachlng will keep-alive 30 secs

1200 |
80

1000
60 800 I

A00O

40
High tail latency caused by coldstart

N 200 L/ —

0
0
1 10 100 1000 10000 100000 0 0.5 1 15 2 25 3

Latency (ms) Timeline (minute)

[1] Serverless in the Wild: Characterizing and Optimizing the Serverless Workload 25

at a Large Cloud Provider@ATC'20

One more thing: fork for serialization-free state transfer

Serverless workflow can compose multiple functions together

- While functions use message passing (MP) or cloud storage (CS) for state transfer

Both MP & CS have serialization & memory copy overhead

2 Can attributes to 95% of the total function execute timel1l

Function Functlon

@

Data @ Data

Cloud storage (e.g., S3)

28
[1] Faastlane: Accelerating function-as-a-service workflows, ATC'21

Fork for serialization-free state transfer

Suppose we want to run functions A & B

1 Where B accesses data generated from A

If we fork B from A using MITOSIS, B can

J Transparently inherit A’s data w/o serialization and memory copy!

-

RunRule #1

[LoadData - |
RunRule #2

Simplified workflow L)

in real-world

Serverless applications[1] [RunRule #n]

FINRA time

(ms)

3000
2500
2000
1500
1000
500
0

[1] https://aws.amazon.com/cn/solutions/case-studies/finra-data-validation/

Data
1
OERO
Remote fork
—Fn —><MITOSIS C/R+DFS C/R

<

1 10 40 80 100 120 160 200
rules of FINRA

int!
More about MITOSIS, check our pre-print!

' ' tions
Detailed remote fork design & implementa

ms
Integrations w/ serverless platfor

 For fast autoscale & state transfer

No Provisioneq Concurrency: Fast RDMA.-

for Serverless Comput

Limitations & future work

codesigned Remote Fork
ing
Xingda Wej!2, Fangming Ly!, Tianxia Wap

g!, Jinyy Gu!, Yuhan Yang!, Rong Chep*1.
'Institute of Paralle]

and Distributeq Systems, SEIEE, §
*Shanghaj AT Laboratory

%, and Hajbo Chen!
hanghaj Jiao Tong Unj

versity

Abstract

Pre-print available at:

ace a tradeoff between cop-
tainer Startup time anq Provision,

ed concurrency (j.e., cached
instances), which is further €xaggerated by the frequent need
for remote container initializatiop, This
10225 o
i abs/2203.
https://arxiv.org/
L[]

Paper presents Mitq-
N operating system, Primitive thy

t provides fast remote
ploits a deep codesign of the OS kernel with
RDMA. By levcraging the fast remote read capability of
RDMA ang Partial state francp..

Conclusion, Thanks & QA

MITOSIS: Fast remote fork design & implementation
J With a codesign between OS and RDMA

Achieve no provisioned concurrency for serverless functions

1 Fork 10,000+ containers within one second across 5 machines

Achieve fast state transfer between functions

1 With no memory copy & data serialization & deserialization overhead

Publicly available at:

O https://github.com/ProjectMitosisOS/ProjectMitosisOS

