
No Provisioned Concurrency: Fast RDMA-codesigned Remote Fork
for Serverless Computing∗

Xingda Wei1,2 Fangming Lu1 Tianxia Wang1 Jinyu Gu1 Yuhan Yang1 Rong Chen1,2 Haibo Chen1

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Shanghai AI Laboratory

1 Motivation
Serverless computing is an emerging cloud computing
paradigm supported by major cloud providers, including
AWS Lambda [10], Azure Functions [24], Google Server-
less [16], Alibaba Serverless Application Engine [11] and
Huawei Cloud Functions [19]. Serverless promises auto-
scaling—users only provide serverless functions, and server-
less platforms automatically allocate computing resources
(e.g., containers1) to execute them. Auto-scaling makes server-
less computing economical: the platforms will reclaim the
containers after functions finish, so they only bill when func-
tions are executed (no charge for idle time).

However, coldstart (i.e., launching a container from scratch
for each function) is a key challenge for fast auto-scaling,
as the start time (over 100 ms) can be orders of magnitude
higher than the execution time for ephemeral serverless func-
tions [14, 25, 35]. Unfortunately, scaling functions to mul-
tiple machines is common because a single machine has a
limited function capacity to handle the timely load spikes.
Consider the two functions sampled from real-world traces
of Azure Functions [28]. The request frequency of function
9a3e4e can surge to over 150 K calls per minute, increased
by 33,000× within one minute (see the top part of Figure 1).

Even worse, container segregates the address spaces of
functions. Thus, dependent functions can only transfer states
via message passing or cloud storage, which add data
serialization/de-serialization, memory copy and accessing
external storage overheads to functions that require interac-
tions. Recent reports have shown that these may count up to
95% of the function execution time [23, 17]. Unfortunately,
transferring states between functions is common in serverless
workflows—a mechanism to compose functions [2, 1].

2 Limitations of the State of the Art
Function startup. Accelerating coldstart has become a hot
topic in both academia and industry [15, 36, 25, 8, 28, 14, 9].
Most of them resort to a form of ‘warmstart’ by provisioned
concurrency, e.g., launching a container from a cached one.
However, ‘warmstart’ fundamentally faces a tradeoff be-

∗This work will be presented at OSDI’23.
1We focus on executing serverless functions with containers, which is widely
adopted [36, 37, 18, 21].

Figure 1. The timelines of call frequency (top) and sufficient re-
source provisioning (bottom) for two serverless functions in a real-
world trace from Azure Functions [28].

tween container startup time and provisioned concurrency
(i.e., cached instances).

Specifically, Caching [20, 21, 37, 15, 36, 25, 8, 28] caches
the finished containers in memory such that later functions
can reuse cached ones without startup. Though being optimal
in startup performance, the platform must provision O(n)
cached containers to prevent stalling n concurrent function
invocations.

Fork [14, 8, 13] optimizes caching by using OS fork to
create multiple function containers from one cached instance
on-the-fly. It reduces the per-machine container provisioned
to O(1), but still requires O(m) cached instances running
functions on m machines (in the case of Figure 1).

Checkpoint/Restore (C/R) [34, 14, 32] starts containers
from pre-checkpointed files to reduce the startup cost. It is
optimal in resource usage: one file (O(1)) is sufficient to
start any subsequent functions, because we can transfer the
file on demand across machines. However, C/R is orders of
magnitude slower in startup compared with Caching or Fork,
especially when the file is not locally stored at the function
execution machine.

Table 1 summarizes different techniques for function
startup. The foundational limitation of ‘warmstart’ is that
they require provisioned concurrency: the platform or the
user must specify the number of cached instances to prevent

1



Table 1: A comparison of startup techniques for autoscaling n concurrent invocations of one function to m machines. Local means the
resources for the startup are provisioned on the function execution machine. The function is a simple python program that prints ‘hello world’.

Coldstart Caching Fork Checkpoint/Restore Remote fork
[4, 33] [20, 37, 25, 28, 36] [14, 8, 13] [34, 14, 32, 9] MITOSIS

Local startup performance Very slow (100ms) Very fast (< 1ms) Fast (1ms) Medium (5ms) Fast (1ms)

Remote startup performance Very slow (1, 000ms) N/A N/A Slow (24ms) Fast (3ms)

Overall resource provisioning O(1) O(n) O(m) O(1) O(1)

the coldstart. There is “no free lunch” for such resources:
vendors require users to reserve and pay for them, e.g., AWS
Lambda Provisioned Concurrency [5].

State sharing. To accelerate the state transfer between
functions, the state-of-the-art approaches propose serverless-
optimized messaging primitives [8] or specialized storage
systems [30, 22, 26]. However, none of them completely elim-
inated the overhead of memory copy and data serialization/de-
serialization [23]. On a single node, Faastlane [23] co-locates
functions in the same container with threads so that it
can bypass these overheads with shared memory accesses.
SPRIGHT [27] achieves a similar effect by retrofitting eBPF.
However, they don’t support efficient data sharing across
nodes.

3 Key Insights: Remote Fork
We argue that remote fork is an efficient primitive for both
function startup and state sharing:

• When generalizing FORK to a remote setting, a single parent
container is sufficient to launch any subsequent containers.
Therefore, FORK realizes no provisioned concurrency: the
users only need to specify whether they require a cached
container to accelerate function startup, not how many.
Further, FORK has been proved efficient in starting functions
for a single machine [14].

• FORK bridges the address spaces of parent and child con-
tainers. The transferred states are pre-materialized in the
parent memory, so the child can seamlessly access them
with shared memory abstraction with no data serialization,
zero-copy (for read-only accesses2) and cloud storage costs.

Challenge: remote fork efficiency. To the best of our
knowledge, existing containers can only achieve a conser-
vative remote fork with a C/R-based approach [29, 12]. To
fork a child, the parent first checkpoints its states by copying
them to a file, and then transfers the file to the child—either
using a remote file copy or a distributed file system. After
receiving the file, the child restores the parent’s execution
by loading the container states from the checkpointed file.
Note that C/R may load some states (i.e., memory pages)
on-demand for better performance [34].

2In the case of the traditional fork. MITOSIS further optimizes with one-sided
RDMA, allowing zero-copy even for read-write accesses.

Our detailed analyses on CRIU [3]—the state-of-the-art
C/R technique on Linux reveal that it is inefficient for realiz-
ing remote fork for serverless computing: it can even be 2.7X
slower than coldstart for serverless functions. We attribute
the performance issues to three folds: First, checkpointing the
memory is costly, whose overhead is proportional to the func-
tion’s working set. Note that checkpointing is unnecessary for
function startup but is crucial when considering state sharing.
Second, transferring the file between machines is slow and
is usually unnecessary because serverless functions typically
touch a subset of the container memory [34]. Finally, access-
ing the remote file pays the software overheads of distributed
file systems.

4 RDMA-OS co-designed fast remote fork

To this end, we present MITOSIS: an OS-codesigned ultra-
fast remote fork primitive for serverless computing. Our key
observation is that the OS can leverage RDMA—a widely
adopted datacenter networking feature to efficiently realize re-
mote fork by imitating local fork. Specifically, OS can directly
access the remote physical memory with RDMA bypassing
remote OS and CPU [31], which is extremely efficient. There-
fore, the parent container no longer needs to checkpoint its
memory to the file. The child container can leverage RDMA
to directly access the parent’s memory, bypassing the soft-
ware overheads introduced by copying the file and accessing
the distributed file system.

We implemented MITOSIS on Linux with its core func-
tionalities written in Rust as a loadable kernel module. It
can remote-fork 10, 000 containers on 5 machines within
0.86 second. MITOSIS is fully compatible with mainstream
containers (e.g., runC [6]), making integration with exist-
ing container-based serverless platforms seamlessly. Though
being efficient, MITOSIS preserves the security model of con-
tainers, i.e., the OS and hardware (RDMA-capable NIC) are
trustworthy while malicious containers (functions) may exist.

To demonstrate the efficiency and efficacy, we integrated
MITOSIS with Fn [37], a popular open-source serverless plat-
form. Under load spikes in real-world serverless workloads,
MITOSIS reduces the 99th percentile latency of the spiked
function by 89% with orders of magnitude lower memory
usage. For a real-world serverless workflow (FINRA [7]),
MITOSIS reduces its execution time by 86%.

2



5 Key Results and Contributions
We highlight our contributions as follows:

• Problem: We analyze the performance-resource provision
trade-off of existing container startup methods, and the
costs of state transfer between functions.

• MITOSIS: An RDMA-co-designed OS remote fork that
quickly launches containers on remote machines without
provisioned concurrency and enables efficient function state
transfer. Specifically, MITOSIS achieves fast startup with no
provisioned concurrency (O(1)), and supports transparent
state sharing between serverless functions.

• Demonstration: We implemented MITOSIS on Linux and
integrated it to Fn. Evaluations on on both microbenchmarks
and real-world serverless applications demonstrate the ef-
ficacy of MITOSIS. The preprint of MITOSIS can be found
at https://arxiv.org/abs/2203.10225. The source
code is also publically available at https://github.com/
ProjectMitosisOS.

References
[1] Apache OpenWhisk Composer. https://github.com/

apache/openwhisk-composer, 2022.

[2] AWS Step Functions. https://aws.amazon.com/
step-functions/, 2022.

[3] CRIU Website. https://www.criu.org/Main_Page,
2022.

[4] Docker Website. https://www.docker.com/, 2022.

[5] Provisioned concurrency for lambda functions.
https://aws.amazon.com/cn/blogs/aws/new-
provisioned-concurrency-for-lambda-
functions/, 2022.

[6] runc. https://github.com/opencontainers/
runc, 2022.

[7] United States Financial Industry Regulatory Authority.
https://aws.amazon.com/cn/solutions/case-
studies/finra-data-validation/, 2022.

[8] AKKUS, I. E., CHEN, R., RIMAC, I., STEIN, M., SATZKE,
K., BECK, A., ADITYA, P., AND HILT, V. SAND: towards
high-performance serverless computing. In 2018 USENIX
Annual Technical Conference, USENIX ATC 2018, Boston,
MA, USA, July 11-13, 2018 (2018), H. S. Gunawi and B. Reed,
Eds., USENIX Association, pp. 923–935.

[9] AO, L., PORTER, G., AND VOELKER, G. M. Faasnap: Faas
made fast using snapshot-based vms. In EuroSys ’22: Seven-
teenth European Conference on Computer Systems, Rennes,
France, April 5 - 8, 2022 (2022), Y. Bromberg, A. Kermarrec,
and C. Kozyrakis, Eds., ACM, pp. 730–746.

[10] AWS. Aws lambda. https://aws.amazon.com/
lambda, 2022.

[11] CLOUD, A. Alibaba serverless application engine. https:
//www.aliyun.com/product/aliware/sae, 2022.

[12] CRIU. CRIU Usage scenarios. https://criu.org/
Usage_scenarios, 2022.

[13] DU, D., LIU, Q., JIANG, X., XIA, Y., ZANG, B., AND CHEN,
H. Serverless computing on heterogeneous computers. In ASP-
LOS ’22: 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems,
Lausanne, Switzerland, 28 February 2022 - 4 March 2022
(2022), B. Falsafi, M. Ferdman, S. Lu, and T. F. Wenisch, Eds.,
ACM, pp. 797–813.

[14] DU, D., YU, T., XIA, Y., ZANG, B., YAN, G., QIN, C., WU,
Q., AND CHEN, H. Catalyzer: Sub-millisecond startup for
serverless computing with initialization-less booting. In ASP-
LOS ’20: Architectural Support for Programming Languages
and Operating Systems, Lausanne, Switzerland, March 16-20,
2020 (2020), J. R. Larus, L. Ceze, and K. Strauss, Eds., ACM,
pp. 467–481.

[15] FOR AWS LAMBDA CONTAINER REUSE, B. P.
https://medium.com/capital-one-tech/best-
practices-for-aws-lambda-container-
reuse-6ec45c74b67e, 2022.

[16] GOOGLE. Google serverless computing. https://cloud.
google.com/serverless, 2022.

[17] HELLERSTEIN, J. M., FALEIRO, J. M., GONZALEZ, J.,
SCHLEIER-SMITH, J., SREEKANTI, V., TUMANOV, A., AND

WU, C. Serverless computing: One step forward, two steps
back. In 9th Biennial Conference on Innovative Data Systems
Research, CIDR 2019, Asilomar, CA, USA, January 13-16,
2019, Online Proceedings (2019), www.cidrdb.org.

[18] HENDRICKSON, S., STURDEVANT, S., HARTER, T.,
VENKATARAMANI, V., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. Serverless computation with open-
lambda. In 8th USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud 2016, Denver, CO, USA, June 20-21,
2016 (2016), A. Clements and T. Condie, Eds., USENIX As-
sociation.

[19] HUAWEI. Huawei clound functions. https:
//developer.huawei.com/consumer/en/
agconnect/cloud-function/, 2022.

[20] JIA, Z., AND WITCHEL, E. Boki: Stateful serverless com-
puting with shared logs. In SOSP ’21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Virtual Event /
Koblenz, Germany, October 26-29, 2021 (2021), R. van Re-
nesse and N. Zeldovich, Eds., ACM, pp. 691–707.

[21] JIA, Z., AND WITCHEL, E. Nightcore: efficient and scal-
able serverless computing for latency-sensitive, interactive
microservices. In ASPLOS ’21: 26th ACM International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, Virtual Event, USA, April 19-23, 2021
(2021), T. Sherwood, E. D. Berger, and C. Kozyrakis, Eds.,
ACM, pp. 152–166.

[22] KLIMOVIC, A., WANG, Y., STUEDI, P., TRIVEDI, A., PFEF-
FERLE, J., AND KOZYRAKIS, C. Pocket: Elastic ephemeral
storage for serverless analytics. login Usenix Mag. 44, 1
(2019).

3

https://arxiv.org/abs/2203.10225
https://github.com/ProjectMitosisOS
https://github.com/ProjectMitosisOS
https://github.com/apache/openwhisk-composer
https://github.com/apache/openwhisk-composer
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://www.criu.org/Main_Page
https://www.docker.com/
https://aws.amazon.com/cn/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://aws.amazon.com/cn/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://aws.amazon.com/cn/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://aws.amazon.com/cn/solutions/case-studies/finra-data-validation/
https://aws.amazon.com/cn/solutions/case-studies/finra-data-validation/
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://www.aliyun.com/product/aliware/sae
https://www.aliyun.com/product/aliware/sae
https://criu.org/Usage_scenarios
https://criu.org/Usage_scenarios
https://medium.com/capital-one-tech/best-practices-for-aws-lambda-container-reuse-6ec45c74b67e
https://medium.com/capital-one-tech/best-practices-for-aws-lambda-container-reuse-6ec45c74b67e
https://medium.com/capital-one-tech/best-practices-for-aws-lambda-container-reuse-6ec45c74b67e
https://cloud.google.com/serverless
https://cloud.google.com/serverless
https://developer.huawei.com/consumer/en/agconnect/cloud-function/
https://developer.huawei.com/consumer/en/agconnect/cloud-function/
https://developer.huawei.com/consumer/en/agconnect/cloud-function/


[23] KOTNI, S., NAYAK, A., GANAPATHY, V., AND BASU, A.
Faastlane: Accelerating function-as-a-service workflows. In
2021 USENIX Annual Technical Conference, USENIX ATC
2021, July 14-16, 2021 (2021), I. Calciu and G. Kuenning,
Eds., USENIX Association, pp. 805–820.

[24] MICROSOFT. Azure functions. https://azure.
microsoft.com/en-us/services/functions/,
2022.

[25] OAKES, E., YANG, L., ZHOU, D., HOUCK, K., HARTER, T.,
ARPACI-DUSSEAU, A., AND ARPACI-DUSSEAU, R. SOCK:
Rapid task provisioning with serverless-optimized containers.
In 2018 USENIX Annual Technical Conference (USENIX ATC
18) (Boston, MA, July 2018), USENIX Association, pp. 57–70.

[26] PU, Q., VENKATARAMAN, S., AND STOICA, I. Shuffling,
fast and slow: Scalable analytics on serverless infrastructure.
In 16th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2019, Boston, MA, February 26-28,
2019 (2019), J. R. Lorch and M. Yu, Eds., USENIX Associa-
tion, pp. 193–206.

[27] QI, S., MONIS, L., ZENG, Z., WANG, I., AND RAMAKRISH-
NAN, K. K. SPRIGHT: extracting the server from serverless
computing! high-performance ebpf-based event-driven, shared-
memory processing. In SIGCOMM ’22: ACM SIGCOMM
2022 Conference, Amsterdam, The Netherlands, August 22 -
26, 2022 (2022), F. Kuipers and A. Orda, Eds., ACM, pp. 780–
794.

[28] SHAHRAD, M., FONSECA, R., GOIRI, I., CHAUDHRY, G.,
BATUM, P., COOKE, J., LAUREANO, E., TRESNESS, C.,
RUSSINOVICH, M., AND BIANCHINI, R. Serverless in the
wild: Characterizing and optimizing the serverless workload
at a large cloud provider. In 2020 USENIX Annual Techni-
cal Conference, USENIX ATC 2020, July 15-17, 2020 (2020),
A. Gavrilovska and E. Zadok, Eds., USENIX Association,
pp. 205–218.

[29] SMITH, J. M., AND IOANNIDIS, J. Implementing remote fork
() with checkpoint/restart. Department of Computer Science,
Columbia Univ., 1987.

[30] SREEKANTI, V., WU, C., LIN, X. C., SCHLEIER-SMITH, J.,
GONZALEZ, J. E., HELLERSTEIN, J. M., AND TUMANOV,
A. Cloudburst: Stateful functions-as-a-service. Proc. VLDB
Endow. 13, 12 (jul 2020), 2438–2452.

[31] TSAI, S.-Y., AND ZHANG, Y. Lite kernel rdma support for
datacenter applications. In Proceedings of the 26th Symposium
on Operating Systems Principles (New York, NY, USA, 2017),
SOSP ’17, ACM, pp. 306–324.

[32] USTIUGOV, D., PETROV, P., KOGIAS, M., BUGNION, E.,
AND GROT, B. Benchmarking, analysis, and optimization
of serverless function snapshots. In ASPLOS ’21: 26th ACM
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Virtual Event,
USA, April 19-23, 2021 (2021), T. Sherwood, E. D. Berger,
and C. Kozyrakis, Eds., ACM, pp. 559–572.

[33] WANG, A., CHANG, S., TIAN, H., WANG, H., YANG, H.,
LI, H., DU, R., AND CHENG, Y. Faasnet: Scalable and
fast provisioning of custom serverless container runtimes at
alibaba cloud function compute. In 2021 USENIX Annual
Technical Conference, USENIX ATC 2021, July 14-16, 2021
(2021), I. Calciu and G. Kuenning, Eds., USENIX Association,
pp. 443–457.

[34] WANG, K. A., HO, R., AND WU, P. Replayable execution
optimized for page sharing for a managed runtime environment.
In Proceedings of the Fourteenth EuroSys Conference 2019,
Dresden, Germany, March 25-28, 2019 (2019), G. Candea,
R. van Renesse, and C. Fetzer, Eds., ACM, pp. 39:1–39:16.

[35] WANG, L., LI, M., ZHANG, Y., RISTENPART, T., AND

SWIFT, M. Peeking behind the curtains of serverless platforms.
In 2018 USENIX Annual Technical Conference (USENIX ATC
18) (Boston, MA, July 2018), USENIX Association, pp. 133–
146.

[36] WEBSITE, A. O. https://openwhisk.apache.org,
2022.

[37] WEBSITE, F. P. https://fnproject.io, 2021.

4

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://openwhisk.apache.org
https://fnproject.io

	Motivation
	Limitations of the State of the Art
	Key Insights: Remote Fork
	RDMA-OS co-designed fast remote fork
	Key Results and Contributions

