
Following the Data, Not the Function: 
Rethinking Function Orchestration 
in Serverless Computing

Minchen Yu1, Tingjia Cao2, Wei Wang1, Ruichuan Chen3

1Hong Kong University of Science and Technology
2University of Wisconsin-Madison
3Nokia Bell Labs

Full paper to appear at NSDI’23



Platform

Developer f
ff …

f
f

deploy an application as a 
set of interacting functions

define events invoke serverless 
applications

Events

Serverless computing (FaaS)

ff

Relieving cloud users from managing servers
• Automatic scaling
• Pay per use



f f
preprocessing image recognition

Orchestrating interacting functions today
Deploying and orchestrating functions as a workflow

• Express interactions between functions as a workflow DAG
• Function-oriented orchestration: driving the workflow execution following 

the function invocation order

However, function-oriented orchestration has three limitations
• Limited expressiveness
• Limited usability
• Limited applicability 

Image Result



Limited expressiveness
Unable to express many complicated function invocation patterns 
once the data flow does not exactly follow function invocation

f
f
f

f
f
f

Data flow

Mappers Reducers

Function invocation

… …

Developers must manually implement the data shuffle, e.g., via external 
storage such as PyWren [SoCC’17] and Locus [NSDI’19]



Limited usability
Not easy to use for exchanging data between functions
• Lack of direct communication forces users to explore many other options
• No single option has always best performance

Data size
������ �����

256KB

���� ���� ����� ����

La
te

nc
y 

(m
s)

6MB �����

���

Data volume exchanged can be dynamic and unpredictable, making it challenging 
to select optimal options, e.g., Pocket [OSDI’18] and Sonic [ATC’21]



Limited applicability
Long function invocation delay
• >10 ms to invoke a warm instance in AWS Step Functions, longer for a 

workflow
• Online services have stringent latency requirements, e.g., 10s of ms

Poor performance in data exchange
• Lack of data locality

Not applicable to latency-critical and data-intensive applications



Desired function orchestration
Existing limitations
• Limited expressiveness
• Limited usability
• Limited applicability

Desired properties of serverless function orchestration
• Rich expressiveness: easily express a rich set of workflow patterns 
• High usability: no need to separately handle data exchange
• Wide applicability: applicable to latency-critical and data-intensive 

applications



Key insight
Why function-oriented orchestration is neither easy to use nor 
efficient?
Agnostic to intermediate data!
• Unaware of how and when data are consumed in a workflow
• Unaware of data locality, not designed for fast data sharing



Key insight
A desired orchestration approach should be data-centric
• Make data consumption explicit to allow fine-grained data exchange
• Enhance data locality for efficient workflow execution

Following the insight, we propose data-centric orchestration



No consistency issuesource functions

data bucket

send object(s) trigger function(s)
f f…

target functions

…f f

Developer

specify trigger conditions

Developers specify how and when the data bucket triggers functions

Data bucket triggers function once the condition is met, thus driving the 
workflow execution

Data bucket stores and manages intermediate data

Data-centric orchestration
Let short-lived and immutable intermediate data trigger functions



Data-centric: meeting all desired properties
Rich expressiveness 
• Break the tight coupling between function invocation and data flow
• Allow fine-grained data exchange

High usability
• Unified interface for both function invocations and data exchange
• No need to separately implement data exchange

Wide applicability
• Fine-grained knowledge of data-function dependencies
• Enable more opportunities to optimize data locality and achieve high 

performance



Case study: MapReduce 

f

f

f

f

f

f

Send object

Mappers Reducers

Function invocation

1

DynamicGroup 
Primitive

2
3

Deploying real-world applications
Specify trigger conditions of data buckets with trigger primitives



Pheromone vs. AWS Step Functions (ASF)

Developers can implement customized primitives via an abstracted interface

Pheromone
A serverless platform with data-centric orchestration



Scheduler

Shared Memory Object Store

Executor … Executor

Coordinator

Worker Node

Scheduler

Shared Memory Object Store

Executor …

Coordinator

…

Worker Node

Durable Key-Value Store

Executor

…
Pheromone Runtime

Pheromone system design
Two-tier scheduling with 
schedulers and coordinators
• Invoke functions as locally as possible 
• Sharded coordinators gather bucket 

status and enhance data locality in 
cross-node scheduling 

Trade data durability for fast I/O
• Zero-copy data exchange via shared 

memory
• Direct data exchange between remote 

functions



Pheromone Evaluation

15



Experimental settings
EC2 deployment
• c5.4xlarge (worker) and c5.xlarge (coordinator) on AWS EC2
• Up to 51 workers and 8 coordinators

Baselines
• Cloudburst [VLDB’20]
• KNIX [ATC’18]
• AWS Lambda and Step Functions (Express workflow)
• Azure Durable Functions



Function interaction latency

Local Remote

��
$�
��
)�
��
#�

�' ��%��$� ������� �� ���%��$� �#����!�"��������& ��$� �# �� ���%��$� �#�����##����������& ��$� �

���" � �� �� %��%"#$ ��� ����
($�"������$�"���� 	�

2 4 8 16 2 4 8 16

40 μs for local invocation: 10x improvement over Cloudburst



Case study: MapReduce sort

1 Pheromone-MR (Compute & I/O)
5.8
6.8

0.59
0.466.6

4.6 9.8
3.3

Pheromone-MR (Interaction)

PyWren (Compute & I/O)

PyWren (Invocation)

PyWren (Interm. Data I/O)

[1] E. Jonas et al. “Occupy the cloud: Distributed computing for the 99%” In Proc. SoCC, 2017

Specifications Pheromone-MR PyWren
Supported operation Map and reduce Map-only
LOC for implementation ~500 ~6k
Users need not handle data shuffle? Yes No

Shuffle 10 GB intermediate data

Pheromone-MR only incurs sub-second

overhead, with up to 1.6x improvement

PyWren1 atop Lambda vs. Pheromone-MR built atop Pheromone



Summary
Pheromone: a serverless platform with data-centric orchestration
• Rich expressiveness

• Easily express a rich set of workflow patterns with fine-grained data exchange
• High usability

• No need to handle data exchange, unifying the interface with function invocation
• Wide applicability

• High performance for both latency-critical and data-intensive applications



Pheromone code

Thank you!

Find me

I’m in the job market!


