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Serverless computing (

Relieving cloud users from managing servers

» Automatic scaling
« Pay per use
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Orchestrating interacting functions today

Deploying and orchestrating functions as a workflow
» Express interactions between functions as a workflow DAG

 Function-oriented orchestration: driving the workflow execution following
the function invocation order

preprocessing image recognition
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However, function-oriented orchestration has three limitations
« Limited expressiveness
 Limited usabillity
« Limited applicability



Limited expressiveness

Unable to express many complicated function invocation patterns
once the data flow does not exactly follow function invocation
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Developers must manually implement the data shuffle, e.g., via external
storage such as PyWren [SoCC'17] and Locus [NSDI'19]



Limited usability

Not easy to use for exchanging data between functions
« Lack of direct communication forces users to explore many other options
* No single option has always best performance
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Data size
Data volume exchanged can be dynamic and unpredictable, making it challenging
to select optimal options, e.g., Pocket [OSDI'18] and Sonic [ATC'21]



Limited applicabllity

Long function invocation delay

* >10 ms to invoke a warm instance in AWS Step Functions, longer for a
workflow

* Online services have stringent latency requirements, e.g., 10s of ms

Poor performance in data exchange
» Lack of data locality

Not applicable to latency-critical and data-intensive applications



Desired function orchestration

Existing limitations
« Limited expressiveness
 Limited usabillity
« Limited applicability

Desired properties of serverless function orchestration
* Rich expressiveness: easily express a rich set of workflow patterns
 High usability: no need to separately handle data exchange

» Wide applicabllity: applicable to latency-critical and data-intensive
applications



Key Insight

Why function-oriented orchestration is neither easy to use nor
efficient”

Agnostic to intermediate datal
* Unaware of how and when data are consumed in a workflow
» Unaware of data locality, not designed for fast data sharing



Key Insight

A desired orchestration approach should be data-centric
« Make data consumption explicit to allow fine-grained data exchange
» Enhance data locality for efficient workflow execution

Following the insight, we propose data-centric orchestration



Data-centric orchestration

Let short-lived and immutable intermediate data trigger functions
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Data-centric: meeting all desired properties

Rich expressiveness
* Break the tight coupling between function invocation and data flow

 Allow fine-grained data exchange
High usability
« Unified interface for both function invocations and data exchange
* No need to separately implement data exchange
Wide applicability
* Fine-grained knowledge of data-function dependencies

* Enable more opportunities to optimize data locality and achieve high
performance



Deploying real-world applications

Specify trigger conditions of data buckets with trigger primitives

Case study: MapReduce
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Pheromone

A serverless platform with data-centric orchestration
Pheromone vs. AWS Step Functions (ASF)

Invocation Patterns ASF Pheromone | app_name = 'event-stream-processing’

. . - 2 functions = ['preprocess', 'query_event_info', 'aggregate']
Sequentlal Execution Task Immediate \ 3 client.register_app(app_name, functions)

. . . . 4

Conditional Invocation Choice ByName \ s # configure the first bucket trigger.
Assembling Invocation Parallel BySet 6 bck_name = "immed_bck' -

- 7 trig_name = 'immediate_trigger
Dynamlc Parallel Map DynamicJoin prim_meta = {'function':'query_event_info'}

- o\client.create_bucket(app_name, bck_name)
. ByBatChSIZe 10 {client.add_trigger (app_name, bck_name, trig_name, \

Batched Data Processing | - ByTime I IMMEDIATE , prim_meta)
k-out-of-n - Redundant
MapReduce - DynamicGroup

Developers can implement customized primitives via an abstracted interface



Pheromone system design

Pheromone Runtime Two-tier scheduling with
Coordinator Coordinator schedulers and coordinators
* Invoke functions as locally as possible
Worker NOdei><$M! » Sharded coordinators gather bucket
Scheduler Scheduler status and enhance data locality in

cross-node scheduling

Executor Executor Executor Executor

Shared Memory Obiject Store < > Shared Memory Object Store Trade data durablhty fOI’ faSt I/O

@ @ « /ero-copy data exchange via shared

memory
Durable Key-Value Store

 Direct data exchange between remote

functions



Pheromone kEvaluation



Experimental settings

EC2 deployment
» cb.4xlarge (worker) and cb.xlarge (coordinator) on AWS EC2
« Up to 51 workers and 8 coordinators

Baselines
« Cloudburst [VLDB20]
 KNIX [ATC'18]
 AWS Lambda and Step Functions (Express workflow)
» Azure Durable Functions



Function interaction latency
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Case study: MapReduce sort

PyWren! atop Lambda vs. Pheromone-MR built atop Pheromone

Specifications Pheromone-MR PyWren

Supported operation Map and reduce Map-only

LOC for implementation ~500 ~bk

Users need not handle data shuffle?  Yes No o)
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[1] E. Jonas et al. “Occupy the cloud: Distributed computing for the 99%” In Proc. SoCC, 2017



Summary

Pheromone: a serverless platform with data-centric orchestration

* Rich expressiveness
» Easily express a rich set of workflow patterns with fine-grained data exchange

 High usability
» No need to handle data exchange, unifying the interface with function invocation
» Wide applicability

» High performance for both latency-critical and data-intensive applications
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