
[Extended Abstract] Following the Data, Not the Function:
Rethinking Function Orchestration in Serverless Computing

Minchen Yu† Tingjia Cao‡ Wei Wang† Ruichuan Chen§

†Hong Kong University of Science and Technology
‡University of Wisconsin-Madison §Nokia Bell Labs

1 Background and Motivation

Serverless computing, with its Function-as-a-Service incarna-
tion, is becoming increasingly popular in the cloud. It allows
developers to write highly scalable, event-driven applications
as a set of short-running functions. The interactions between
functions are specified as workflows, and the serverless plat-
form manages resource provisioning, function orchestration,
autoscaling, logging, and fault tolerance for these workflows.

Serverless workflows typically consist of multiple inter-
active functions with diverse function-invocation and data-
exchange patterns [7, 13–15, 17, 20, 21]. Ideally, a serverless
platform should provide an expressive and easy-to-use func-
tion orchestration to support various interaction patterns. The
orchestration should also be made efficient, enabling low-
latency invocation and fast data exchange between functions.
However, function orchestration in current serverless plat-
forms is neither efficient nor easy to use with three limitations.

Limited expressiveness. Current serverless platforms take a
function-oriented approach to orchestrating a serverless work-
flow: individual functions are connected by the workflow that
specifies their invocation dependencies. For example, many
platforms model a serverless workflow as a directed acyclic
graph (DAG) [3, 4, 6, 10, 18], in which the nodes represent
functions and the edges indicate the invocation dependencies
between functions. Yet, this approach is oblivious to when
and how data are exchanged between functions. Without such
knowledge, the serverless platform assumes that the output of
a function is entirely and immediately consumed by the next
function(s), which is not the case in many applications, e.g.,
the data shuffle [17] and batch data processing [8] in Fig. 1.
Consequently, funcion-oriented approach is inconvenient or
incapable of expressing sophisticated function interactions,
mandating developers to create their own workarounds [15].

Limited usability. As serverless functions are stateless with-
out direct communications, developers need to implement
data exchange using various options. For example, functions
can exchange data either synchronously or asynchronously
via a message broker or a shared storage [1,2,6,9,16,18]. They
can also process data from various sources, such as nested
function calls, message queues, or other cloud services [5].
Due to the lack of a single best approach to exchange data,
developers may need to write complex logic to dynamically
select the most efficient way at runtime, which significantly
reduces the usability of serverless platforms. Fig. 2 illustrates

f
f
f

Stage-1

f
f
f

Stage-2

f f

Function invocation flow
Data flow

Shuffle Batched data processing

Figure 1: The shuffle operation (left) in data analytics that
involves all-to-all data exchange, and the batched data pro-
cessing (right) in a stream that aggregates accumulated data
in a time window. The data flow is not the same as function
invocation dependency.

Data size
1GB1MB 100MB

256KB

100B 10KB 100KB 10MB

La
te

nc
y 

(m
s)

6MB 512MB

1KB

Figure 2: The interaction latency of two AWS Lambda func-
tions under various data sizes using AWS Step Functions
(ASF), S3, nested function call (Lambda), and Redis (ASF +
Redis). No single approach can prevail across all scenarios.

this problem by comparing four data-passing approaches in
AWS Lambda, where there is no single best approach.
Limited applicability. Current serverless platforms usually
have a function interaction delay of multiple or tens of mil-
liseconds (e.g., 20 ms in AWS Step Functions), and such
delays accumulate as more functions are chained together
in an application workflow, which can be unacceptable to
latency-sensitive applications [14]. In addition, as current
serverless platforms cannot efficiently support the sharing of
varying-sized data between functions (Fig. 2), they are ill-
suited for data-intensive applications [13, 17]. Altogether, the
above characteristics substantially limit the applicability of
current serverless platforms.

2 Data-Centric Function Orchestration

Key insight. We propose that function orchestration should
follow the flow of data rather than the function-level in-
vocation dependencies, thus a data-centric approach. We
note that intermediate data are typically short-lived and im-

1



Table 1: Comparison between the function-oriented workflow
primitives in AWS Step Functions (ASF) and the data-centric
trigger primitives in Pheromone.

Invocation Patterns ASF Pheromone

Sequential Execution Task Immediate
Conditional Invocation Choice ByName
Assembling Invocation Parallel BySet
Dynamic Parallel Map DynamicJoin

Batched Data Processing - ByBatchSize
ByTime

k-out-of-n - Redundant
MapReduce - DynamicGroup

Function invocations Send objects

f f f
every second

f

f

f

f

f

f

MapReduce
Mappers Reducers

1
2
3

Preprocess Query 
event info

Aggregate 

Advertisement event stream

Figure 3: Usage examples of two primitives: DynamicGroup
that dynamically divides data into multiple groups, each trig-
gering a reduce function (left), and ByTime that periodically
triggers aggregate function with accumulated data (right).

mutable [16, 19]: they wait to be consumed once they are
generated. We therefore make data consumption explicit and
enable it to trigger the target functions. Developers can spec-
ify when and how intermediate data should be consumed by
the target functions and trigger their activation, thus driving
the execution of an entire workflow.

The data-centric function orchestration addresses the limi-
tations of the current practice via three key advances. First,
it breaks the tight coupling between function flows and data
flows, as data do not have to follow the exact order of function
invocations. It therefore can enable a flexible and fine-grained
control over data consumption, allowing developers to ex-
press a rich set of workflow patterns (i.e., rich expressiveness).
Second, the data-centric function orchestration provides a
unified programming interface for both function invocations
and data exchange, obviating the need for developers to im-
plement complex logic via a big mix of external services to
optimize data exchange (i.e., high usability). Third, knowing
when and how the intermediate data will be consumed pro-
vides opportunities for the scheduler to optimize the locality
of functions and relevant data, and thus latency-sensitive and
data-intensive applications can be supported efficiently (i.e.,
wide applicability).
Data bucket and trigger primitive. In data-centric func-
tion orchestration, we design a data bucket abstraction that
holds the intermediate results of functions in a logical object
store. The data bucket provides a rich set of data trigger prim-
itives that developers can use to specify when and how the
intermediate data are passed to the intended function(s) and
trigger their execution.

We have developed a new serverless platform, Pheromone,
that supports data-centric function orchestration. Table 1 lists
trigger primitives supported in Pheromone, which can en-
able more sophisticated invocation patterns compared with
ASF [3]. Fig. 3 further illustrates how the trigger primitives
DynamicGroup and ByTime can be used to enable data shuf-
fling and periodic data aggregation respectively.

3 System Design

Pheromone achieves high-performance data-centric orchestra-
tion with two key designs. First, it uses a two-tier distributed
scheduling hierarchy to exploit data locality enabled by the
data-centric design. Each worker node runs a local sched-
uler, which keeps track of workflow execution status via data
buckets and locally schedules subsequent functions whenever
possible, thus reducing the invocation latency. For a large
workflow running across multiple workers, a global coordina-
tor can gather bucket statuses from relevent schedulers and
route next function requests to a worker with most interme-
diate data. Pheromone’s global coordinators are sharded to
ensure high scalability, where each coordinator only handles a
disjoint set of workflows. Second, Pheromone trades the dura-
bility of intermediate data for fast data exchange. Functions
exchange data within a node through a zero-copy shared-
memory object store to fully reap the benefits of data locality.
Pheromone also enables direct transfer of intermediate objects
between nodes for efficient remote data exchange.

4 Experimental Results

We have evaluated Pheromone against well-established com-
mercial and open-source serverless platforms, including AWS
Lambda with Step Functions, Azure Durable Functions,
Cloudburst [18], and KNIX [6]. Evaluation results show that
Pheromone improves the function invocation latency by up
to 10× and 450× over Cloudburst (best open-source base-
line) and AWS Step Functions (best commercial baseline),
respectively. Pheromone has negligible data-exchange over-
head (e.g., tens of µs) thanks to its zero-copy data exchange.
It can also scale well to large workflows and incurs only
millisecond-scale orchestration overhead when running thou-
sands of functions, whereas the overhead is at least a few
seconds in other platforms.

We also provide case studies of two serverless applica-
tions, i.e., Yahoo! stream processing [11] and MapReduce
sort [12] (examples in Fig. 3). Compared with other server-
less platforms, Pheromone allows developers to easily express
function interaction patterns of the complex workflows (rich
expressiveness), requires no specific implementation to han-
dle data exchange between functions (high usability), and
efficiently supports both latency-sensitive and data-intensive
applications (wide applicability).

2



References

[1] AWS ElastiCache. https://aws.amazon.com/
elasticache/.

[2] AWS S3. https://aws.amazon.com/s3/.

[3] AWS Step Functions. https://aws.amazon.com/
step-functions/.

[4] Google Cloud Composer. https://cloud.google.
com/composer.

[5] Invoking AWS Lambda functions. https://docs.
aws.amazon.com/lambda/latest/dg/lambda-
invocation.html.

[6] KNIX Serverless. https://github.com/knix-
microfunctions/knix/.

[7] Serverless applications scenarios. https://docs.
aws.amazon.com/wellarchitected/latest/
serverless-applications-lens/scenarios.html.

[8] Serverless reference architecture: Real-time stream
processing. https://github.com/aws-samples/
lambda-refarch-streamprocessing/.

[9] Use Amazon S3 ARNs instead of passing large payloads.
https://docs.aws.amazon.com/step-functions/
latest/dg/avoid-exec-failures.html.

[10] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: Towards high-
performance serverless computing. In Proc. USENIX
ATC, 2018.

[11] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves,
M. Holderbaugh, Z. Liu, K. Nusbaum, K. Patil, B. J.
Peng, and P. Poulosky. Benchmarking streaming com-
putation engines: Storm, flink and spark streaming. In
Proc. IEEE IPDPSW, 2016.

[12] Jeffrey Dean and Sanjay Ghemawat. MapReduce: sim-
plified data processing on large clusters. In Proc.
USENIX OSDI, 2004.

[13] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-latency
video processing using thousands of tiny threads. In
Proc. USENIX NSDI, 2017.

[14] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient
and scalable serverless computing for latency-sensitive,
interactive microservices. In Proc. ACM ASPLOS, 2021.

[15] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Sto-
ica, and Benjamin Recht. Occupy the cloud: Distributed
computing for the 99%. In Proc. ACM SoCC, 2017.

[16] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
Proc. USENIX OSDI, 2018.

[17] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuf-
fling, fast and slow: Scalable analytics on serverless
infrastructure. In Proc. USENIX NSDI, 2019.

[18] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin,
Johann Schleier-Smith, Joseph E. Gonzalez, Joseph M.
Hellerstein, and Alexey Tumanov. Cloudburst: stateful
functions-as-a-service. In Proc. VLDB Endow., 2020.

[19] Yang Tang and Junfeng Yang. Lambdata: Optimizing
serverless computing by making data intents explicit. In
Proc. IEEE CLOUD, 2020.

[20] Minchen Yu, Zhifeng Jiang, Hok Chun Ng, Wei Wang,
Ruichuan Chen, and Bo Li. Gillis: Serving large neural
networks in serverless functions with automatic model
partitioning. In Proc. IEEE ICDCS, 2021.

[21] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jin-
grong Chen, and Ion Stoica. Caerus: NIMBLE task
scheduling for serverless analytics. In Proc. USENIX
NSDI, 2021.

3

https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/s3/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://cloud.google.com/composer
https://cloud.google.com/composer
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://github.com/knix-microfunctions/knix/
https://github.com/knix-microfunctions/knix/
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/scenarios.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/scenarios.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/scenarios.html
https://github.com/aws-samples/lambda-refarch-streamprocessing/
https://github.com/aws-samples/lambda-refarch-streamprocessing/
https://docs.aws.amazon.com/step-functions/latest/dg/avoid-exec-failures.html
https://docs.aws.amazon.com/step-functions/latest/dg/avoid-exec-failures.html

	Background and Motivation
	Data-Centric Function Orchestration
	System Design
	Experimental Results

