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Web Application and Dynamic Workload
• Request bursts are long-term enemies for web applications

• Dynamic workload demands rapid and cost-efficient burst handling
– Reserving computation resource -> high cost
– On-demand scaling -> slow response

2https://www.theverge.com/2018/7/16/17577654/amazon-prime-day-website-down-deals-service-disruption
https://www.nytimes.com/2015/12/01/technology/target-paypal-website-cyber-monday.html
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Serverless Computing
• Serverless computing (e.g., Function-as-a-Service) is a new 

cloud-computing paradigm
– Developers write fine-grand functions and submit them to FaaS platforms
– FaaS platforms invoke functions on-demand and bill developers according 

to resource usage and execution time
– Rapid auto-scaling, pay-as-you-go billing model, no management labor
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Scaling with FaaS
• FaaS provides rapid-scaling and cost-efficient computing resources 

for web applications to handle request bursts
– Provide more computation resources on demand rapidly(rapid-scaling)
– Fine-grand configuration and billing to eliminate the cost (cost-efficient)
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Scaling solution Min. Running Time Conf. & Bill granularity Preparation Time

Reserve resource
（AWS Reserved Burstable）

1 year GB, Years --

On-demand virtual machine
（AWS On-demand EC2） 1 min GB, Seconds ~40s

On-demand container
（AWS Fargate & ECS）

1 min GB, Seconds ~40s

FaaS
（AWS Lambda）

1 ms MB, Milliseconds <1s
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Problem: How to run existing web 
applications with FaaS functions



Strawman 1: Direct Execution
• Directly run existing web applications in FaaS

• Stateful applications vs. stateless functions
– FaaS platform manages functions under the stateless assumption
– Web applications contain complex local state like user session
– May cause unrecoverable state loss
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Strawman 2: Application Refactor
• Refactor (part of) existing application to fit FaaS functions

• Manual rewriting
– Most code (99.6% of the jar file) are framework (e.g., spring) code
– Tightly coupled user code and framework code
– Too complex to manually refactor code

• Static analysis
– Java is a highly dynamic language, especially in the web application case
– Deep invocation depth (>20), complex polymorphism (31 implementations for 1 

interface), dynamically generated classes (287 for one request)
– Hard to perform static analysis

7

*All data except for evaluation are tested in pybbs, an open-source online forum web application



Our Solution: Offloading-based Semi-FaaS
• Semi-FaaS: automatically extract time-consuming code snippets and 

offload their execution to FaaS at runtime
– Partial: keep the state at the server, extract and offload part of the application to 
FaaS (direct execution)

– Automatic: atomically slice and run logic with FaaS (manual rewrite)
– Dynamic: Analyze at runtime based on dynamic profiling (static analysis)
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Server JVM
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• Begin from the chosen function to be offloaded
• Traverse all accessible code based on dynamic profiling
• Record and pack all visited classes and data
• Prune in case of too much data

FaaS Platfrom

Semi-FaaS Execution

Start function

Initial closure

*We implemented Semi-FaaS on Java Virtual Machine (JVM), but Semi-FaaS be extended to other language runtimes



Semi-FaaS Execution
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Semi-FaaS Execution
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Fallback-based Offloaded Execution
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Problem: Fallbacks slow down 
offloaded execution



Frequent fallbacks hurt performance
• Native invocation

• Network access

• Missing code or data
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Handling Native Invocation
• Web applications rely on native invocation heavily

– For reflection, access system resources, acceleration, etc.
– E.g., a simple request can trigger 220k+ native invocation
– Native invocations are not offloadable since they may rely on the 

hidden native state (e.g., JVM-internal state, OS-related state)

• Packageable: a new interface to pack hidden native state
– Define how to pack/unpack hidden native state
– Modify the JDK library to implement packageable interface for 

specific classes
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Proxy-based Connection Management

• Network operation in web applications
– Web application depends on the network to access external services 

(e.g., DB)
– A simple request requires 80+ DB access
– Network connections are hard to migrate due coupled with OS

• Proxy-based network connection migration
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Shadow Execution
• Incomplete initial closure introduces frequent fallback

– Dynamic nature of web applications makes it hard to traverse all 
runnable code

– Closure completes itself with fallbacks during execution

• Shadow execution to hide overhead during warmup
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The Beehive Runtime
• A modified JVM supporting semi-FaaS execution, with

– Offload function selection based on runtime profiling data
– Fallback detecting and handling
– Memory consistent among endpoints following Java Memory Model

– Memory management among endpoints 
– Optional fault tolerance mechanism

• Enables unmodified applications to enjoy semi-FaaS by 
changing their underline JVM
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Please checkout our paper :)



Experimental Setup
• Environment: AWS cloud

– DB: m4.10xlarge (40 vCPUs/2.40GHz, 160GB DRAM) EC2 instance
– Server: m4.xlarge (4 vCPUs/2.30GHz, 16GB DRAM) EC2  instance

• Applications
– Thumbnail: micro-benchmark making thumbnail of images
– Pybbs: open-source forum application with 24692 classes
– Springblog: open-source blog application 18493 classes

(All mentioned data are average of all three applications by default)
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Experimental Setup
• Scaling methods

– Burstable: Reserved resource (reserved burstable EC2 instance)
– EC2: On-demand VM (on-demand EC2 instance)
– Fargate: On-demand container (AWS Fargate)

– BeehiveO: Local FaaS platform (functions running on EC2 
cluster managed by OpenWhisk)

– BeehiveL: Commercial FaaS platform (functions running on 
AWS Lambda)
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Auto-Scaling
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Vanilla & Beehive-Single: No scaling
BeehiveO: Scale with Functions running on sufficient 
m4.large instances managed by OpenWhisk
BeehiveL: Scale with Functions running on sufficient 
AWS Lambda with 1GB memory

Beehive atomically scales to higher throughput (9.41x (O) & 9.11x (L))
Lower throughput (worst 7.14%) with the same resource due to management overhead

Centralized server acting as dispatcher and 
state manager becomes the bottleneck



Fast Scaling
• Beehive handles burst faster with acceptable overhead
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11.25x(O) & 6.43x(L) faster than scaling with EC2
6.32x(O) & 3.61x(L) faster than scaling with Fargate
Acceptable tail-latency slowdown (15.0%(O) & 
31.0%(L) compared with EC2)

Reach stabilized latency in 668.56ms on AWS Lambda with function cache 
(two orders of magnitude better)

*Sringblog case for better presentation, refer to our full paper for performance result of all applications

Request burst happens



On-demand Cost
• Beehive enjoys on-demand billing provided by FaaS
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When burst infrequently, Beehive costs less compared 
with reserving resources (3.56x(L) at a 10% burst rate)

Beehive always costs more compared with other 
on-demand scaling methods due to execution 
overhead, while reacting to burst faster



Conclusion
• FaaS is suitable for web applications to handle request burst

– Challenging to leverage FaaS by direct execution or code refactoring

• Semi-FaaS: Fallback-based automatic computation offload at 
runtime with FaaS

– Partial, automatic, dynamic way to leverage FaaS for computation offloading
– Packageable, network proxy, shadow execution to eliminate performance overhead 

caused by fallbacks

• Beehive: Runtime supporting Semi-FaaS execution model
– Automatically scale to higher throughput
– Faster reaction to request burst compared to on-demand scaling
– Lower cost compared to reserving idle resources in advance
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Thanks!


