
BeeHive: Sub-second elasticity for web
services with Semi-FaaS execution

Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang,
Zhaoguo Wang, Haibo Chen

Shanghai Jiao Tong University

Web Application and Dynamic Workload
• Request bursts are long-term enemies for web applications

• Dynamic workload demands rapid and cost-efficient burst handling
– Reserving computation resource -> high cost
– On-demand scaling -> slow response

2https://www.theverge.com/2018/7/16/17577654/amazon-prime-day-website-down-deals-service-disruption
https://www.nytimes.com/2015/12/01/technology/target-paypal-website-cyber-monday.html

Slower response Unavailability

Serverless Computing
• Serverless computing (e.g., Function-as-a-Service) is a new

cloud-computing paradigm
– Developers write fine-grand functions and submit them to FaaS platforms
– FaaS platforms invoke functions on-demand and bill developers according

to resource usage and execution time
– Rapid auto-scaling, pay-as-you-go billing model, no management labor

3

Developer

FaaS Functions FaaS Platforms
Physical Server

Scaling with FaaS
• FaaS provides rapid-scaling and cost-efficient computing resources

for web applications to handle request bursts
– Provide more computation resources on demand rapidly(rapid-scaling)
– Fine-grand configuration and billing to eliminate the cost (cost-efficient)

4

Scaling solution Min. Running Time Conf. & Bill granularity Preparation Time

Reserve resource
（AWS Reserved Burstable）

1 year GB, Years --

On-demand virtual machine
（AWS On-demand EC2） 1 min GB, Seconds ~40s

On-demand container
（AWS Fargate & ECS）

1 min GB, Seconds ~40s

FaaS
（AWS Lambda）

1 ms MB, Milliseconds <1s

5

Problem: How to run existing web
applications with FaaS functions

Strawman 1: Direct Execution
• Directly run existing web applications in FaaS

• Stateful applications vs. stateless functions
– FaaS platform manages functions under the stateless assumption
– Web applications contain complex local state like user session
– May cause unrecoverable state loss

6

Funtion

Function

Function

…State

Web APP

FaaS Platform

User Request

State

Updated local state

Recycled by the platform when idle
under the stateless assumption

State

Lost all local state

Strawman 2: Application Refactor
• Refactor (part of) existing application to fit FaaS functions

• Manual rewriting
– Most code (99.6% of the jar file) are framework (e.g., spring) code
– Tightly coupled user code and framework code
– Too complex to manually refactor code

• Static analysis
– Java is a highly dynamic language, especially in the web application case
– Deep invocation depth (>20), complex polymorphism (31 implementations for 1

interface), dynamically generated classes (287 for one request)
– Hard to perform static analysis

7

*All data except for evaluation are tested in pybbs, an open-source online forum web application

Our Solution: Offloading-based Semi-FaaS
• Semi-FaaS: automatically extract time-consuming code snippets and

offload their execution to FaaS at runtime
– Partial: keep the state at the server, extract and offload part of the application to
FaaS (direct execution)

– Automatic: atomically slice and run logic with FaaS (manual rewrite)
– Dynamic: Analyze at runtime based on dynamic profiling (static analysis)

8

State

State

Web APP Function

Funtion

Function

Function

Web APP

State
Function

Function

Monolithic FaaS Semi-FaaS

9

Server JVM

Java Heap Class

Class
Class
Class
Class

User Request

Overload

Calculate initial closure

Class
Class

Class
Class

Function

Send closure to function
Ready for offloading

Class
Class

• Begin from the chosen function to be offloaded
• Traverse all accessible code based on dynamic profiling
• Record and pack all visited classes and data
• Prune in case of too much data

FaaS Platfrom

Semi-FaaS Execution

Start function

Initial closure

*We implemented Semi-FaaS on Java Virtual Machine (JVM), but Semi-FaaS be extended to other language runtimes

Semi-FaaS Execution

10

Server JVM

Java Heap Class
Class
Class
Class

Class

Overload

Class
Class

Function

Class
Class

Invoke to FaaS

FaaS Platfrom

Executed in FaaS

Return to server

User Request

Semi-FaaS Execution

11

Server JVM

Java Heap Class
Class
Class
Class

Class

Overload

Class
Class

Function

Class
Class

FaaS Platfrom

User Request

Function

Function

Function

…

Offload user logic to
FaaS during burst

Fallback-based Offloaded Execution

12

Server JVM

Java Heap Class
Class
Class
Class

Class

Overload

Class
Class

Function

Class
Class

FaaS Platfrom

User Request

Fallback requestHandle operation at server
(e.g., copy missing data)

Fallback response
Receive fallback response

and continue execution

Operations cannot be handled at FaaS
(e.g., missing data)

User Request

13

Problem: Fallbacks slow down
offloaded execution

Frequent fallbacks hurt performance
• Native invocation

• Network access

• Missing code or data

14

Handling Native Invocation
• Web applications rely on native invocation heavily

– For reflection, access system resources, acceleration, etc.
– E.g., a simple request can trigger 220k+ native invocation
– Native invocations are not offloadable since they may rely on the

hidden native state (e.g., JVM-internal state, OS-related state)

• Packageable: a new interface to pack hidden native state
– Define how to pack/unpack hidden native state
– Modify the JDK library to implement packageable interface for

specific classes
15

Proxy-based Connection Management

• Network operation in web applications
– Web application depends on the network to access external services

(e.g., DB)
– A simple request requires 80+ DB access
– Network connections are hard to migrate due coupled with OS

• Proxy-based network connection migration

16

Server

Function

DBProxy

ID Server FD FaaS FD DB FD

123 8 16

fd=8

ID=123
fd=23

fd=16…
fd (ID=123)

…

23

Shadow Execution
• Incomplete initial closure introduces frequent fallback

– Dynamic nature of web applications makes it hard to traverse all
runnable code

– Closure completes itself with fallbacks during execution

• Shadow execution to hide overhead during warmup

17

Server

Function

User Request

Shadow execution to
warmup function

Real execution to
handle user request

Key challenge
Hide side effects

Hide local state update by modifying
memory consistency handling

DBProxy

Hide external state update by
intercepting at the proxy

The Beehive Runtime
• A modified JVM supporting semi-FaaS execution, with

– Offload function selection based on runtime profiling data
– Fallback detecting and handling
– Memory consistent among endpoints following Java Memory Model

– Memory management among endpoints
– Optional fault tolerance mechanism

• Enables unmodified applications to enjoy semi-FaaS by
changing their underline JVM

18

Please checkout our paper :)

Experimental Setup
• Environment: AWS cloud

– DB: m4.10xlarge (40 vCPUs/2.40GHz, 160GB DRAM) EC2 instance
– Server: m4.xlarge (4 vCPUs/2.30GHz, 16GB DRAM) EC2 instance

• Applications
– Thumbnail: micro-benchmark making thumbnail of images
– Pybbs: open-source forum application with 24692 classes
– Springblog: open-source blog application 18493 classes

(All mentioned data are average of all three applications by default)

19

Experimental Setup
• Scaling methods

– Burstable: Reserved resource (reserved burstable EC2 instance)
– EC2: On-demand VM (on-demand EC2 instance)
– Fargate: On-demand container (AWS Fargate)

– BeehiveO: Local FaaS platform (functions running on EC2
cluster managed by OpenWhisk)

– BeehiveL: Commercial FaaS platform (functions running on
AWS Lambda)

20

Auto-Scaling

21

Vanilla & Beehive-Single: No scaling
BeehiveO: Scale with Functions running on sufficient
m4.large instances managed by OpenWhisk
BeehiveL: Scale with Functions running on sufficient
AWS Lambda with 1GB memory

Beehive atomically scales to higher throughput (9.41x (O) & 9.11x (L))
Lower throughput (worst 7.14%) with the same resource due to management overhead

Centralized server acting as dispatcher and
state manager becomes the bottleneck

Fast Scaling
• Beehive handles burst faster with acceptable overhead

22

11.25x(O) & 6.43x(L) faster than scaling with EC2
6.32x(O) & 3.61x(L) faster than scaling with Fargate
Acceptable tail-latency slowdown (15.0%(O) &
31.0%(L) compared with EC2)

Reach stabilized latency in 668.56ms on AWS Lambda with function cache
(two orders of magnitude better)

*Sringblog case for better presentation, refer to our full paper for performance result of all applications

Request burst happens

On-demand Cost
• Beehive enjoys on-demand billing provided by FaaS

23

When burst infrequently, Beehive costs less compared
with reserving resources (3.56x(L) at a 10% burst rate)

Beehive always costs more compared with other
on-demand scaling methods due to execution
overhead, while reacting to burst faster

Conclusion
• FaaS is suitable for web applications to handle request burst

– Challenging to leverage FaaS by direct execution or code refactoring

• Semi-FaaS: Fallback-based automatic computation offload at
runtime with FaaS

– Partial, automatic, dynamic way to leverage FaaS for computation offloading
– Packageable, network proxy, shadow execution to eliminate performance overhead

caused by fallbacks

• Beehive: Runtime supporting Semi-FaaS execution model
– Automatically scale to higher throughput
– Faster reaction to request burst compared to on-demand scaling
– Lower cost compared to reserving idle resources in advance

24

Thanks!

