
BeeHive: Sub-second elasticity for web services with Semi-FaaS
execution*

Ziming Zhao†, Mingyu Wu†§, Jiawei Tang†, Binyu Zang†‡, Zhaoguo Wang†, Haibo Chen†‡

{dumplings_ming, mingyuwu, jiawei_tang, byzang, zhaoguowang, haibochen}@sjtu.edu.cn
†Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University

§Shanghai AI Laboratory
‡Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

1. Motivation

The dynamic nature of the real-world web environment
stimulates strong demand for resource elasticity, i.e.,
to rapidly scale up and down according to the fluctu-
ated workload. Fortunately, cloud vendors have pro-
posed many different scaling mechanisms, and function-
as-a-service (FaaS) is one of the most recent and pop-
ular solutions. Compared with others, FaaS automati-
cally scales applications in a finer granularity (namely
functions) and a faster reaction while providing a pay-
as-you-go model for cost-efficient computation. Main-
stream cloud vendors have provided their own FaaS plat-
forms [2, 5, 11, 12, 16], while prior work has proposed to
run various applications with massive parallelism as FaaS
functions [8, 9, 10, 14, 17, 18].

Although FaaS seems like a good fit for building elastic
web applications, it is mainly designed for short-running,
stateless functions and thus encounters challenges when
applying to web service scenarios. The major problem for
migration is the mismatch between the stateless nature of
FaaS platforms and the stateful execution of web services.
In FaaS, all internal states would be lost when a function
finishes its execution. In contrast, web services maintain
internal states like user sessions, which should not be
abandoned. FaaS does not provide support to manage
those states and is thus not suitable for directly executing
web services.

Since directly migrating web services is infeasible, an
alternative method would be rewriting them into FaaS-
friendly components. Nevertheless, this method is also
impractical, given the complexity of web applications.
Enterprise-level web applications contain tens of thou-
sands of classes [3], which involve various frameworks
(like Spring [20]) and dynamically generated auxiliary
methods and make rewriting difficult. Therefore, an auto-
matic method is preferred for web applications to leverage
the power of FaaS.

*This work has been accepted and will appear in ASPLOS’23.

2. Related Work
Prior efforts have proposed stateful support on FaaS plat-
forms for more complicated applications. Crucial [6] and
Faasm [19] allow developers to annotate shared objects
across functions, and the runtime system would manage
them in a distributed data store. Azure Durable Func-
tions [7] provide a new programming model to define
stateful workflow atop its own FaaS platform. Another
line of work provides transaction semantics for applica-
tions [13, 21, 22]. However, their programming models
are different from existing stateful applications, so rewrit-
ing is still necessary for web services, which is infeasible
due to code complexity.

Instead of retrofitting FaaS platforms, Jin et al. [15]
manually rewrite smaller web services (namely micro-
services) for FaaS migration. They find that although
the size of micro-services is quite small, the rewriting
phase is still non-trivial as they contain complicated states.
Recent experiences [1] also show the complexity of code
rewriting. Their experiences necessitate an automatic
mechanism to support the migration of complex stateful
applications.

3. BeeHive Design
To automatically apply FaaS in existing stateful web ser-
vices, we propose a novel execution model called Semi-
FaaS. We further proposed a runtime-based offloading
framework, BeeHive, to realize the Semi-FaaS model.

Semi-FaaS execution model. Given the complicated
states inside web services, we do not need to migrate them
completely to FaaS; we can migrate only a part of them
instead. This work thus proposes the Semi-FaaS, a new ex-
ecution model for complicated applications (like web ser-
vices) to embrace FaaS. As illustrated in Figure 1, Semi-
FaaS combines the execution model of traditional mono-
lithic services and FaaS: it extracts the time-consuming
part of monolithic web services and migrates them for
FaaS execution while executing the rest and maintaining
states on the monolith side (referred to as the server).
Thanks to the Semi-FaaS model, web applications can be
executed on FaaS without any code modifications.



StateState

State

Monolithic FaaS Semi-FaaS

Figure 1: The Semi-FaaS execution model

Server JVM

class

class

class

class

class

initial closure

FaaS Platform

function instances

user requests

class

class

fallback

execution result

return value

forward

2

3

4

1

Figure 2: The workflow of BeeHive’s offloading mecha-
nism

BeeHive Overview. Although the Semi-FaaS model
seems appealing for existing web applications, the ex-
traction phase is not simple due to the code complexity.
Fortunately, web services are usually written in high-level
languages like Java, JavaScript, and Go. Those languages
run atop managed runtimes, which are suitable for state
management and code extraction by gaining application
semantics during their execution. Therefore, we build our
Semi-FaaS execution model atop managed runtimes to dy-
namically extract code snippets for FaaS execution. Our
BeeHive framework realizes the Semi-FaaS model atop
Java virtual machines (JVMs) to support enterprise-level
Java web services. Note that the design of BeeHive is
not restricted to JVMs and can be used in other language
virtual machines like JavaScript V8. BeeHive mainly
contains two parts: an offloading-based mechanism for
Semi-FaaS execution and an underlying runtime system to
support consistent and efficient execution among multiple
endpoints.

Offloading-based Semi-FaaS with BeeHive. The of-
floading mechanism is the core of BeeHive’s Semi-FaaS
execution. As shown in Figure 2, BeeHive mainly con-
tains two components: long-running servers and FaaS
platforms. When facing request bursts, BeeHive controls
servers to proactively offload a part of its workload to
FaaS platforms for execution in FaaS functions while
keeping the rest still handled by the server.

The unit for offloading is called a closure, which con-
tains code and data likely to be used by FaaS execution,
according to statistics collected by BeeHive’s language
runtime. Note that the initial closure sent to the FaaS
platform is incomplete as rarely accessed code and data
are not included. To this end, BeeHive provides a fall-
back mechanism. Functions send fallback requests to the
server when accessing missing code or data, while the

server handles requests and sends the results back so that
the offloaded functions can resume their execution.

Unfortunately, fallbacks also introduce considerable
overheads due to the coordination between FaaS func-
tions and the server. Therefore, BeeHive categorizes the
fallbacks and provides corresponding optimizations to
reduce the fallback count. For native invocations, Bee-
Hive provides the packageable abstraction to pack native
states into closures to eliminate related fallbacks. For
network connections with other services, BeeHive man-
ages them with proxies and allows FaaS functions to
process network packets on the server’s behalf directly.
For inevitable missing code and data fallbacks, we ob-
serve fallbacks frequently occur at the beginning of FaaS
execution and provide a shadow execution mechanism to
warm up without introducing visible overhead to users’
real requests.

The underlying runtime system. The runtime system
in BeeHive is responsible for state management across
multiple endpoints. It enables distributed object sharing
by differentiating remote references in each FaaS instance
and relies on the memory model in Java (JMM) to syn-
chronize accesses on shared states stored in the original
server. Besides, BeeHive should choose suitable methods
for offloading during runtime. It treats methods contain-
ing business logic (i.e., request handler) as candidates
according to existing annotations required by frameworks
(e.g., Spring), and instruments profiling code to pick time-
consuming ones for offloading. Further, BeeHive also
provides efficient memory management (i.e., garbage col-
lection) for all endpoints and an optional fault tolerance
mechanism to recover from FaaS function failures.

4. Implementation and Evaluation
BeeHive is implemented atop the HotSpot JVM of Open-
JDK 8u265-ga. We evaluated BeeHive with a small web
service (image processing) and two enterprise-level Java
web applications (pybbs and SpringBlog). We use both the
open-source (OpenWhisk [4] on AWS EC2) and the com-
mercialized FaaS platform (AWS Lambda [5]) for testing
and leveraging other commercialized scaling methods in
AWS as baselines.

Our evaluation shows that BeeHive can scale to higher
throughput (9.41x) with the Semi-FaaS execution model
while resulting in a 7.14% throughput drop given the
same computation resource. When facing a request burst,
BeeHive can scale out much faster than AWS EC2 on-
demand instances (11.25x) while causing a 15.0% tail
latency slowdown. Equipped with the instance caching
mechanism in AWS lambda, BeeHive can tackle request
bursts in less than a second (two orders of magnitude
faster than other scaling solutions). Compared with re-
serving idle instances, BeeHive can reduce the financial
cost when request bursts occur infrequently. Please refer

2



to our full paper for other evaluation results.

5. Discussion

Limitations of Semi-FaaS. Although the Semi-FaaS exe-
cution model can provide rapid resource provision, it also
introduces performance overhead and costs more when
bursts frequently happen. Therefore, applications satis-
fying the following requirements are more suitable for
Semi-FaaS. First, the overall execution time should be at
least at the millisecond level considering the performance
overhead. Second, the number of fallbacks should be
restricted during Semi-FaaS execution, which suggests
applications should induce infrequent synchronizations,
limited remote code and data fetching, and inevitable
native fallbacks (e.g., accessing local files). Third, the
request burst should not happen frequently so the cost
of FaaS execution is acceptable. Finally, BeeHive can
perform better if developers have annotated their criti-
cal methods as offloading candidates according to the
application semantics.

Combination of Semi-FaaS and other scaling solu-
tions. BeeHive can be further combined with other scal-
ing solutions to reduce its overhead. BeeHive maintains
an offloading ratio to control the number of offloaded and
local-executed request, and thus can scale in and out by
setting the ratio. Therefore, applications can scale out
with BeeHive before on-demand instances are launched.
When instances are ready, BeeHive can set the ratio to
zero to stop offloading to FaaS. With this solution, ap-
plications can achieve both rapid resource provisioning
(provided by Semi-FaaS) and less performance overhead
(provided by other scaling methods) when facing bursts.

6. Conclusion

This paper presents BeeHive, an offloading framework for
web applications to leverage FaaS. BeeHive automatically
extracts code snippets from web applications and lever-
ages a fallback-based mechanism to synchronize with
the original server. BeeHive also conducts a series of
optimizations to improve the performance of offloaded
functions and provides runtime support for distributed
execution. The evaluation result shows that BeeHive can
automatically and rapidly scale out with FaaS execution.

References
[1] The not-so-straightforward road from microservices to

serverless. https://www.infoq.com/presentations/
microservices-to-serverless/, 2019.

[2] Alibaba Cloud. Function compute. https://www.
alibabacloud.com/product/function-compute, 2021.

[3] Anastasios Antoniadis, Nikos Filippakis, Paddy Krishnan,
Raghavendra Ramesh, Nicholas Allen, and Yannis Smaragdakis.
Static analysis of java enterprise applications: frameworks and
caches, the elephants in the room. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 794–807, 2020.

[4] Apache OpenWhisk. Apache openwhisk - open source serverless
cloud platform. https://openwhisk.apache.org/, 2020.

[5] AWS. Aws lambda. https://aws.amazon.com/lambda/,
2020.

[6] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París,
Pierre Sutra, and Pedro García-López. On the faas track: Building
stateful distributed applications with serverless architectures. In
Proceedings of the 20th International Middleware Conference,
pages 41–54, 2019.

[7] Sebastian Burckhardt, Chris Gillum, David Justo, Konstanti-
nos Kallas, Connor McMahon, and Christopher S Meiklejohn.
Durable functions: semantics for stateful serverless. Proceed-
ings of the ACM on Programming Languages, 5(OOPSLA):1–27,
2021.

[8] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo
Chatterjee, Christos Kozyrakis, Matei Zaharia, and Keith Win-
stein. From laptop to lambda: Outsourcing everyday jobs to
thousands of transient functional containers. In Proceedings of
the 2019 USENIX Conference on Usenix Annual Technical Con-
ference, USENIX ATC ’19, pages 475–488, Berkeley, CA, USA,
2019. USENIX Association.

[9] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-latency video
processing using thousands of tiny threads. In 14th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 363–376, 2017.

[10] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal
Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken,
Brendon Jackson, et al. An open-source benchmark suite for
microservices and their hardware-software implications for cloud
& edge systems. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, pages 3–18. ACM, 2019.

[11] Google. Cloud functions - google cloud. https://cloud.
google.com/functions/, 2020.

[12] IBM. Ibm cloud functions. https://www.ibm.com/cloud/
functions, 2020.

[13] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless
computing with shared logs. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pages 691–
707, 2021.

[14] Zhipeng Jia and Emmett Witchel. Nightcore: efficient and scal-
able serverless computing for latency-sensitive, interactive mi-
croservices. In Tim Sherwood, Emery Berger, and Christos
Kozyrakis, editors, ASPLOS ’21: 26th ACM International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, Virtual Event, USA, April 19-23, 2021,
pages 152–166. ACM, 2021.

[15] Zewen Jin, Yiming Zhu, Jiaan Zhu, Dongbo Yu, Cheng Li,
Ruichuan Chen, Istemi Ekin Akkus, and Yinlong Xu. Lessons
learned from migrating complex stateful applications onto server-
less platforms. In Proceedings of the 12th ACM SIGOPS Asia-
Pacific Workshop on Systems, pages 89–96, 2021.

[16] Microsoft. Microsoft azure functions. https://azure.
microsoft.com/services/functions/, 2020.

[17] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling,
fast and slow: Scalable analytics on serverless infrastructure.
In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 193–206, 2019.

[18] Qubole. Spark-on-lambda. https://github.com/qubole/
spark-on-lambda/, 2017.

[19] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isola-
tion for efficient stateful serverless computing. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20), pages 419–433.
USENIX Association, 2020.

[20] Spring. Spring makes java productive. https://spring.io/,
2021.

[21] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E
Gonzalez, Joseph M Hellerstein, and Jose M Faleiro. A fault-
tolerance shim for serverless computing. In Proceedings of the
Fifteenth European Conference on Computer Systems, pages 1–
15, 2020.

[22] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian An-
gel, and Vincent Liu. Fault-tolerant and transactional stateful
serverless workflows. In 14th {USENIX} Symposium on Oper-
ating Systems Design and Implementation ({OSDI} 20), pages
1187–1204, 2020.

3

https://www.infoq.com/presentations/microservices-to-serverless/
https://www.infoq.com/presentations/microservices-to-serverless/
https://www.alibabacloud.com/product/function-compute
https://www.alibabacloud.com/product/function-compute
https://openwhisk.apache.org/
https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://azure.microsoft.com/services/functions/
https://azure.microsoft.com/services/functions/
https://github.com/qubole/spark-on-lambda/
https://github.com/qubole/spark-on-lambda/
https://spring.io/

	Motivation
	Related Work
	BeeHive Design
	Implementation and Evaluation
	Discussion
	Conclusion

