Carbink: Fault-Tolerant Far Memory

Yang Zhou"™ Hassan M. G. Wassel? Sihang Liu®" Jiagi Gao' James Mickens' Minlan Yu'"?2
Chris Kennelly? Paul Turner? David E. Culler? Henry M. Levy?4 Amin Vahdat?

'Harvard University 2Google
3University of Virginia “University of Washington
g

X /.

' W

* Contributed to this work during internships at Google.

Memory-Intensive Applications in Data Centers

Graph processing: # of nodes [1]
Webpages
Videos
Fares o Clueweb
854B

Memory provisioning is hard, as memory is limited by server physical boundary
® Over-provisioning memory for peak usage — 40%-60% memory utilization [3]
® Growing data in one process even exceeds single-server memory limit

VOLTDB

Can applications dynamically utilize the unused memory on other servers?

[1] £acki, Jakub, et al. "Connected components at scale via local contractions.” arXiv preprint 2018
[2] Stonebraker, Michael, et al. "The VoltDB Main Memory DBMS." IEEE Data Eng. Bull 2013
[3] Tirmazi, Muhammad, et al. "Borg: the next generation." EuroSys 2020

Background: Far Memory on Commodity Servers [1,2,3,...]
Benefits of far memory:

DB
@® Dynamically provisioning unused

= memory to memory-intensive apps
Node N @® Apps can use much more memory
than single-machine limit

Data center network
(100Gbps, few-us RTT)

[1] Gu, Juncheng, et al. "Efficient memory disaggregation with infiniswap." NSDI 2017
[2] Aguilera, Marcos K., et al. "Remote regions: a simple abstraction for remote memory." ATC 2018
[3] Amaro, Emmanuel, et al. "Can far memory improve job throughput?." EuroSys 2020

Background: Far Memory on Commodity Servers [1,2,3,...]

Local node === > Remote node1
\\ \\ S
A SN S
AN Y S S
S S S

\ N N S -

oS ' Remote node2
\ N
\ \\
\\ ~.
N\
\ ™ Remote node3
N\
N\
N\
\ L]
\

N\

\
Remote node N

[1] Gu, Juncheng, et al. "Efficient memory disaggregation with infiniswap." NSDI 2017
[2] Aguilera, Marcos K., et al. "Remote regions: a simple abstraction for remote memory." ATC 2018
[3] Amaro, Emmanuel, et al. "Can far memory improve job throughput?." EuroSys 2020

Application Interface: Remotable Pointers

Application-Integrated Far Memory [1]

flemote node1

@ Remotable pointer

§!emote node2) Remotable object

\ N
2N \‘I Remote node3
\\
\
. :

\

What if remote nodes fail?

\
‘I Remote node N

[1] Ruan, Zhenyuan, et al. "AIFM: High-performance, application-integrated far memory." OSDI'20

The Must-Have Feature: Fault Tolerance

Local node |(g: ——————————— > Remote node1

S S o
\\\\\\\\\\

N\ \\ \\\\ oge o .

o | Remote nodes w Probability of a.ppllcatlo.n crash

SR) grows almost linearly with N
N
\ N

\ e
AN
' “I Remote node3
\

\
\
\
\

AN
‘I Remote node N

How to build a fault-tolerant far memory system?

... assume fail-stop faults and no partial network failures 6

Talk Outline

Direction: in-memory erasure coding for fault tolerance

Carbink: making erasure coding work in practice

Evaluation: performance and cost of Carbink

Replication vs. Erasure Coding

node

(@) (e
Loca d
data

ﬁennote

Replication

@® High memory overheads (3x)

nodes

SSD vs. Memory

SSD would become bottleneck during
bursty workloads or failure recovery [1]

[1] Lee, Youngmoon, et al. "Hydra: Resilient and Highly Available Remote Memory." FAST'22

B P —
Loca — |

node il |
- Remote
artty nodes

Erasure coding (EC)

® Much smaller memory usage (1.5x)
@ Single core achieves 4GB/s encoding tput [1]

In-memory erasure coding

vV

Talk Outline

Direction: in-memory erasure coding for fault tolerance

@® High performance & low memory usage

Carbink: making erasure coding work in practice

Evaluation: performance and cost of Carbink

Challenge 1: Remotable Objects Have Different Sizes

Erasure coding irregular-sized objects is hard

Padding: objects aligned

|

e [

o3

mj but wasting memory
|

ES |

Splitting: small objects
incurs large metadata

Carbink approach: grouping similar-sized objects into spans (like TCMalloc [1])
@® Spans are page-aligned and regular-sized

[1] Hunter, Andrew Hamilton, et al. "Beyond malloc efficiency to fleet efficiency: a hugepage-aware memory allocator.” OSDI'21 10

Grouping Similar-Sized Objects into Spans

8KB span
A

1KB

~\ rﬁl ~
==

24KB span
A

e (NEDEDIRERIRES

Span-centric memory pooling

@® Applying spans to object management and data swapping
@® Spans are page-aligned, and never end with a partial object

11

Challenge 2: Efficient Swapping under Erasure Coding

EC-Split (Hydra [1]): EC-Batch (Carbink):
erasure codes individual spans erasure codes spansets
| | > > | |
(o) . | : o |
Loca L | Lodse spani |
node L | nodeEkS CHESE. |
: Remote p2Remote
Parity nodes [__nodes
Multiple network 10s to swap-in/out a span Single network 10 to swap-in a span
@® Stressing network stack — slow swapping @® Fast swapping and low tail latency

@® Stragglers — high tail latency

[1] Lee, Youngmoon, et al. "Hydra: Resilient and Highly Available Remote Memory." FAST'22 12

Swap-In&Out Granularity Mismatch — Remote Fragmentation

Spanset1

span3
span4

Local node

13

Swap-In&Out Granularity Mismatch — Remote Fragmentation

Spanset1

1

Spanset2

spans
spané

span3
span4

S

S

Local node

14

Remote Compaction for Defragmentation

Spanset1 W_/\ Spanset3| (free)
\

-——

No impacts on span swapping perf: off

1 spam spand| T~ . .
S0 | Foane Spond the critical path of swap-ins/outs
span3 span3
spand] {—" Penalty: may consume more memory;

dead spans not compacted immediately

(

ispan4i

Spanset map

Zero-copy span merging

Spanset3: span5,6,3,4

LocC

15

Talk Outline

Direction: in-memory erasure coding for fault tolerance
@® High performance & low memory usage
Carbink: making erasure coding work in practice

@® Span-centric memory pooling — managing arbitrary-sized objects
@® Erasure coding spansets — achieving swapping efficiency

Evaluation: performance and cost of Carbink

16

Evaluation Overview

Workloads:
® Aninternal transactional KV-store doing TPC-A transactions
@® Graph connected components (skipped here due to time limit)
® A microbenchmark dereferencing remotable objects

Metrics: throughput, tail latency, memory usage

Testbed:
@ Servers with 50 Gbps NIC and PonyExpress [1] user-space network stacks
® One-sided RMAs for span swapping; RPCs for remote compaction

[1] Marty, Michael, et al. "Snap: A microkernel approach to host networking." SOSP’19

17

Throughput (KV-store)

|Working set size
.60
> < EC-Split
—
b + EC-Batch
7)) Perform similarly because
& 40 — working set fits local memory
=
>
Q.
< 20 - EC-Batch achieves up to 1.5x
g) — speedup over EC-Split
O
| -
=
0 | | |
0 25 50 75 100

Local memory (% of 50GB)

Tail Latency (Microbenchmark)

99 percentile latency (us)

100 -

)

N W

o o

o o
l

< EC-Split

~| + EC-Batch

g *

EC-Batch achieves 1.2x-1.4x tail latency
reduction over EC-Split (before knee point)

o

|
2

|
4

Offered load (Mops)

19

Other Results

Remote memory usage:

@® EC-Batch consumes at most 35% more memory than EC-Split
@® ... but still only % of replication memory usage

More in the paper!

® Remote compaction resource usage
@® Failure recovery times
@® AIFM (swapping individual objects) vs. Carbink

20

Carbink Summary

Fault tolerance is a must-have feature for applications to use far memory

Carbink: making erasure coding FT work in practice for far memory system
@® Grouping objects into spans — handle arbitrary-sized objects
® Erasure coding spansets — single network 10 data-fetch

Up to 1.5x application speedup and 1.4x tail latency reduction with up to 35% more
memory usage (compared to state-of-the-art EC-Split)

Keys to Enabling Memory Disaggregation

J Carbink
[Performance] [Fault Tolerance]4/'

Thank You!

Carbink: making erasure coding FT work in practice for far memory system

Up to 1.5x application speedup and 1.4x tail latency reduction with up to 35%
more memory usage (compared to state-of-the-art EC-Split)

22

Backup Slides

Carbink Design:
® AIFM Programming Interface

@® Thread Synchronization

@® Mitigating Swap-in Amplification

Carbink Evaluation:
® AIFM vs. Carbink Performance

® Remote Memory Usage (KV-store)

® Failure Recovery (KV-store)

23

Back

Application-Level Remoteable Pointers (like AIFM[1])

RemUniquePtr<Node> rem_ptr = AIFM::MakeUnique<Node>();
{

DerefScope scope;

Node* normal_ptr = rem_ptr.Deref (scope);

//Compute over the Node object.
} //Scope is destroyed; Node object can be evicted.

@® DerefScope constructor acquires RCU lock; deconstructor releases
® Deref() checks pointer status bits

“Reverse pointer”: embedded in each object, pointing to the RemUniquePtr
® Enables object moving and evicting

[1] Ruan, Zhenyuan, et al. "AIFM: High-performance, application-integrated far memory." OSDI'20. 24

Back

Thread Synchronization

Application threads
1. Grabs an RCU read lock (ie, DerefScope)
2. If the Present bit is not set, swap in

3. IfPisset: Filtering threads
a. Butthe M and E bits are unset, return object 1. Set M bit
(local) address 2. Call SyncRcuU() (ie, the RCU write waiting lock)
b. If Misset (by filtering threads), race to acquire 3. Race to acquire the pointer’s spinlock
the pointer’s spinlock a. If winning, move the object
i. If winning, makes a copy of the object, b. Otherwise, ignore the object
and returns its address.
ii. Otherwise, go to step 1.o Eviction threads
c. If Eisset (by eviction threads), ... 12 Set E bit

25

Mitigating Swap-in Amplification

Prioritizing evicting spans containing large objects

=
o

% of allocated
memory per sec
(0]
|

=
\2%\]\6 %\k% 6D‘\L% A*"'ig;ﬂ\?’ﬁ\f\%ﬁ@ﬂ\?b%@ 56*6 31\(% '\:‘6 '_6*%

1l
Allocated object size

® GWP:large objects occupy the majority of memory.
@® Moreover, hot objects tend to be small: Spanner reports roughly 95% of accesses
involve objects smaller than 1.8KB.

Back

26

Back

AIFM (Swapping Individual Objects) vs. Carbink

Obj-based (RPC) -= Obj-based (RMA)
-©- Carbink Non-FT - Carbink EC-Batch

~ 60
X
n
(ol
= 40-
"S Carbink Non-FT: similar
_CCJ- performance as AIFM.
o 20-
5
O
L
= 0 | | | |
0 25 50 75 100

Local memory (% of 50GB)

27

Remote Memory Usage (KV-store)

< EC-Split % Replication

Back

-+ EC-Batch

w
1
\
\
|
|
|

Normalized remote
memory usage
N
|

RN
l

EC-Batch remote: at most
35% more memory usage.

0 I |
0 25 50

I
75 100

Local memory (% of 50GB)

28

Failure Recovery (KV-store)

;..2 Data node lost ___ Replication
5 007 b ¢ . -- EC-Batch
RN
TR RN L T
S '||'||,|'l|‘||l :||||I|'l:’,l|l|| Il||||l I:
o v . h
)
5207 1.2k
g Tpc—> ‘Fully re‘covered
=0 I I I |
80 85 90 95
Time (sec)

Back

EC-Batch: 0.6s to restore to
normal vs. Replication 0.3s.

EC-Batch: 1.7x longer time for
fully recovery.

29

