
Carbink: Fault-Tolerant Far Memory

Yang Zhou1* Hassan M. G. Wassel2 Sihang Liu3* Jiaqi Gao1 James Mickens1 Minlan Yu1,2

Chris Kennelly2 Paul Turner2 David E. Culler2 Henry M. Levy2,4 Amin Vahdat2

1

1Harvard University   2Google 
3University of Virginia   4University of Washington

* Contributed to this work during internships at Google.



[1] Łącki, Jakub, et al. "Connected components at scale via local contractions." arXiv preprint 2018
2

Memory-Intensive Applications in Data Centers

Orkut
3M

Friendster
65M

Clueweb
955M

Videos
92B

Webpages
854B

Graph processing: # of nodes [1]

~TB

Memory provisioning is hard, as memory is limited by server physical boundary

[2] Stonebraker, Michael, et al. "The VoltDB Main Memory DBMS." IEEE Data Eng. Bull 2013

Can applications dynamically utilize the unused memory on other servers?

● Over-provisioning memory for peak usage → 40%-60% memory utilization [3]
● Growing data in one process even exceeds single-server memory limit

[2]

[3] Tirmazi, Muhammad, et al. "Borg: the next generation." EuroSys 2020

VOLTDB



Background: Far Memory on Commodity Servers [1,2,3,...]

3

[1] Gu, Juncheng, et al. "Efficient memory disaggregation with infiniswap." NSDI 2017
[2] Aguilera, Marcos K., et al. "Remote regions: a simple abstraction for remote memory." ATC 2018
[3] Amaro, Emmanuel, et al. "Can far memory improve job throughput?." EuroSys 2020
…

Data center network 
(100Gbps, few-μs RTT)

Node4Node1

Node2 Node5

Node3 Node6Node NNode N

Node2

Node4

Node3

Node5

Node1
mem

Benefits of far memory: 
● Dynamically provisioning unused 

memory to memory-intensive apps
● Apps can use much more memory 

than single-machine limit

DB



Background: Far Memory on Commodity Servers [1,2,3,...]

4

[1] Gu, Juncheng, et al. "Efficient memory disaggregation with infiniswap." NSDI 2017
[2] Aguilera, Marcos K., et al. "Remote regions: a simple abstraction for remote memory." ATC 2018
[3] Amaro, Emmanuel, et al. "Can far memory improve job throughput?." EuroSys 2020
…

Local node

Remote node2

Remote node1

Remote node3

...

Remote node N



Remote node2

Remote node1

Remote node3

...

Remote node N

Application Interface: Remotable Pointers

5

Local node
Remotable pointer

Remotable object

[1] Ruan, Zhenyuan, et al. "AIFM: High-performance, application-integrated far memory." OSDI’20

Application-Integrated Far Memory [1] 

What if remote nodes fail? 

Swap-in

Swap-out



The Must-Have Feature: Fault Tolerance

6

Probability of application crash 
grows almost linearly with N

How to build a fault-tolerant far memory system?

Local node

Remote node2

Remote node1

Remote node3

Remote node N

...
… assume fail-stop faults and no partial network failures



Talk Outline

7

Direction: in-memory erasure coding for fault tolerance

Carbink: making erasure coding work in practice

Evaluation: performance and cost of Carbink



Local 
node

Remote
nodes

Replication vs. Erasure Coding

8

Local 
node

Remote
nodes

Replication

data
data

data

● High memory overheads (3x) ● Much smaller memory usage (1.5x)
Erasure coding (EC)

Parity

SSD would become bottleneck during 
bursty workloads or failure recovery [1]

[1] Lee, Youngmoon, et al. "Hydra: Resilient and Highly Available Remote Memory." FAST’22

● Single core achieves 4GB/s encoding tput [1] 

In-memory

✓
SSD vs. Memory

✓
erasure coding

data data



Direction: in-memory erasure coding for fault tolerance

Carbink: making erasure coding work in practice

Evaluation: performance and cost of Carbink

Talk Outline

9

● High performance & low memory usage



Challenge 1: Remotable Objects Have Different Sizes

Erasure coding irregular-sized objects is hard

10

Carbink approach: grouping similar-sized objects into spans (like TCMalloc [1])

[1] Hunter, Andrew Hamilton, et al. "Beyond malloc efficiency to fleet efficiency: a hugepage-aware memory allocator." OSDI’21

● Spans are page-aligned and regular-sized

4KB

6KB

5KB

3KB

Padding: objects aligned 
but wasting memory 64B

16B

Chunk 
map

Splitting: small objects 
incurs large metadata



8KB span

Grouping Similar-Sized Objects into Spans

11

1KB 

3.3KB 

24KB span

Span-centric memory pooling

● Spans are page-aligned, and never end with a partial object
● Applying spans to object management and data swapping



Local 
node

Remote
nodes

Challenge 2: Efficient Swapping under Erasure Coding

12

EC-Split (Hydra [1]): 
erasure codes individual spans

Multiple network IOs to swap-in/out a span

EC-Batch (Carbink): 
erasure codes spansets

[1] Lee, Youngmoon, et al. "Hydra: Resilient and Highly Available Remote Memory." FAST’22

span1
span2

span3
span4

p1
p2

Local 
node

Remote
nodesParity

● Fast swapping and low tail latency
Single network IO to swap-in a span

span
span1

span2
span3

span4

● Stressing network stack → slow swapping
● Stragglers → high tail latency



span1
span2
span3
span4

p1
p2

Spanset1

Swap-In&Out Granularity Mismatch → Remote Fragmentation

13

Local node



span1
span2
span3
span4

p1
p2

Spanset1

Swap-In&Out Granularity Mismatch → Remote Fragmentation

14

span5
span6
span7
span8

p3
p4

Spanset2

Local node



Local node

Spanset map

Remote Compaction for Defragmentation

15

span1
span2
span3
span4

p1
p2

Spanset1

span5
span6
span7
span8

p3
p4

Spanset2
No impacts on span swapping perf: off 
the critical path of swap-ins/outs

Penalty: may consume more memory; 
dead spans not compacted immediately

span5
span6

span4
p5

span3

p6

Spanset3 (free)

Zero-copy span merging
Spanset3: span5,6,3,4

Spanset1: span1,2,3,4
Spanset2: span5,6,7,8



Talk Outline

16

Direction: in-memory erasure coding for fault tolerance
● High performance & low memory usage

Carbink: making erasure coding work in practice

Evaluation: performance and cost of Carbink

● Span-centric memory pooling → managing arbitrary-sized objects
● Erasure coding spansets → achieving swapping efficiency



Evaluation Overview

Testbed: 
● Servers with 50 Gbps NIC and PonyExpress [1] user-space network stacks
● One-sided RMAs for span swapping; RPCs for remote compaction

17[1] Marty, Michael, et al. "Snap: A microkernel approach to host networking." SOSP’19

Workloads:
● An internal transactional KV-store doing TPC-A transactions
● Graph connected components (skipped here due to time limit)
● A microbenchmark dereferencing remotable objects

Metrics: throughput, tail latency, memory usage



Throughput (KV-store)

18

Perform similarly because 
working set fits local memory

Working set size

EC-Batch achieves up to 1.5x
speedup over EC-Split



Tail Latency (Microbenchmark)

19

EC-Batch achieves 1.2x-1.4x tail latency 
reduction over EC-Split (before knee point)



Other Results

Remote memory usage: 

20

More in the paper! 

● Remote compaction resource usage
● Failure recovery times
● AIFM (swapping individual objects) vs. Carbink

● EC-Batch consumes at most 35% more memory than EC-Split
● … but still only ⅔ of replication memory usage



Carbink Summary

21

Fault tolerance is a must-have feature for applications to use far memory

Carbink: making erasure coding FT work in practice for far memory system
● Grouping objects into spans → handle arbitrary-sized objects
● Erasure coding spansets → single network IO data-fetch

Up to 1.5x application speedup and 1.4x tail latency reduction with up to 35% more 
memory usage (compared to state-of-the-art EC-Split)

Keys to Enabling Memory Disaggregation

Performance Fault Tolerance
Carbink



22

Thank You!

Carbink: making erasure coding FT work in practice for far memory system

Up to 1.5x application speedup and 1.4x tail latency reduction with up to 35% 
more memory usage (compared to state-of-the-art EC-Split)

Icons from Flaticon.com, vecteezy.com, icon-library.com, nicepng.com



Backup Slides

23

Carbink Design: 
● AIFM Programming Interface

● Thread Synchronization

● Mitigating Swap-in Amplification

Carbink Evaluation: 
● AIFM vs. Carbink Performance

● Remote Memory Usage (KV-store)
● Failure Recovery (KV-store)



Application-Level Remoteable Pointers (like AIFM[1])

1
2
3
4
5
6

● DerefScope constructor acquires RCU lock; deconstructor releases
● Deref() checks pointer status bits

24

“Reverse pointer”: embedded in each object, pointing to the RemUniquePtr
● Enables object moving and evicting

[1] Ruan, Zhenyuan, et al. "AIFM: High-performance, application-integrated far memory." OSDI’20.

Back



Thread Synchronization

Application threads
1. Grabs an RCU read lock (ie, DerefScope)
2. If the Present bit is not set, swap in
3. If P is set:  

a. But the M and E bits are unset, return object 
(local) address

b. If M is set (by filtering threads), race to acquire 
the pointer’s spinlock 

i. If winning, makes a copy of the object, 
and returns its address.

ii. Otherwise, go to step 1.b
c. If E is set (by eviction threads), …

25

Filtering threads
1. Set M bit
2. Call SyncRCU() (ie, the RCU write waiting lock)
3. Race to acquire the pointer’s spinlock

a. If winning, move the object
b. Otherwise, ignore the object 

Eviction threads
1. Set E bit
2. …

Back



Mitigating Swap-in Amplification

Prioritizing evicting spans containing large objects

26

● GWP: large objects occupy the majority of memory.
● Moreover, hot objects tend to be small: Spanner reports roughly 95% of accesses 

involve objects smaller than 1.8KB. 

Back



AIFM (Swapping Individual Objects) vs. Carbink

27

Carbink Non-FT: similar 
performance as AIFM.

Back



Remote Memory Usage (KV-store)

28

EC-Batch remote: at most
35% more memory usage. 

Back



Failure Recovery (KV-store)

29

EC-Batch: 0.6s to restore to 
normal vs. Replication 0.3s.

EC-Batch: 1.7x longer time for 
fully recovery.

Back


