
Carbink: Fault-Tolerant Far Memory
Yang Zhou†∗ Hassan M. G. Wassel‡ Sihang Liu§∗ Jiaqi Gao† James Mickens† Minlan Yu†‡

Chris Kennelly‡ Paul Turner‡ David E. Culler‡ Henry M. Levy‖‡ Amin Vahdat‡

†Harvard University ‡Google §University of Virginia ‖University of Washington

1 Motivation
In a datacenter, matching a particular application to just
enough memory and CPUs is hard. A commodity server
tightly couples memory and compute, hosting a fixed number
of CPUs and RAM modules that are unlikely to exactly match
the computational requirements of any particular application.
Even if a datacenter contains a heterogeneous mix of server
configurations, the load on each server (and thus the amount
of available resources for a new application) changes dynam-
ically as old applications exit and new applications arrive.
Thus, even state-of-the-art cluster schedulers [25,26] struggle
to efficiently bin-pack a datacenter’s aggregate collection of
CPUs and RAM. For example, Google [26] and Alibaba [18]
report that the average server has only ~60% memory utiliza-
tion, with substantial variance across machines.

Disaggregated datacenter memory [3, 5, 7, 8, 11, 23, 24] is
a promising solution. In this approach, a CPU can be paired
with an arbitrary set of possibly-remote RAM modules, with
a fast network interconnect keeping access latencies to far
memory small. From a developer’s perspective, far memory
can be exposed to applications in several ways. For example,
an OS can treat far RAM as a swap device, transparently
exchanging pages between local RAM and far RAM [5,11,24].
Alternatively, an application-level runtime like AIFM [23]
can expose remotable pointer abstractions to developers, such
that pointer dereferences (or the runtime’s detection of high
memory pressure) trigger swaps into and out of far memory.

Much of the prior work on disaggregated memory [3,23,28]
has a common limitation: a lack of fault tolerance. Unfor-
tunately, in a datacenter containing hundreds of thousands
of machines, faults are pervasive. Many of these faults are
planned, like the distribution of kernel upgrades that require
server reboots, or the intentional termination of a low-priority
task when a higher-priority task arrives. However, many server
faults are unpredictable, like those caused by hardware fail-
ures or kernel panics. Thus, any practical system for far mem-
ory has to provide a scalable, fast mechanism to recover from
unexpected server failures. Otherwise, the failure rate of an
application using far memory will be much higher than the
failure rate of an application that only uses local memory;
the reason is that the use of far memory increases the set of
machines whose failure can impact an application [6].

Some prior far-memory systems do provide fault toler-
ance via replication [5, 11, 24]. However, replication-based
approaches suffer from high storage overheads. Hydra [15]
uses erasure coding, which has smaller storage penalties than
∗Contributed to this work during internships at Google.

App 
threads

Remotable pointers

Carbink
threads

Swap in span

Swap out 
spans + parity

Compute nodes

Span Object Memory manager

…

Monitoring

Allocation, dealloc.
Monitoring

Registration, 
deregistration

Memory nodes

Figure 1: Carbink’s high-level architecture.

replication. However, Hydra’s coding scheme stripes a sin-
gle memory page across multiple remote nodes. This means
that a compute node requires multiple network fetches to re-
construct a page; furthermore, computation over that page
cannot be outsourced to remote memory nodes, since each
node contains only a subset of the page’s bytes.

In this paper, we present Carbink,1 a new framework for
far memory that provides efficient, high-performance fault
tolerance via span-based memory management and erasure
coding. Unlike Hydra, Carbink also allows computation to
be offloaded to remote memory nodes. We have implemented
Carbink atop our datacenter infrastructure. Compared to Hy-
dra, Carbink has up to 29% lower tail latency and 48% higher
application performance, with at most 35% more remote mem-
ory usage.

2 Carbink Design
Figure 1 depicts the high-level architecture of Carbink. Com-
pute nodes execute single-process (but potentially multi-
threaded) applications that want to use far memory. Memory
nodes provide far memory that compute nodes use to store
application data that cannot fit in local RAM. A logically-
centralized memory manager tracks the liveness of compute
nodes and memory nodes. The manager also coordinates the
assignment of far memory regions to compute nodes. When a
memory node wants to make a local memory region available
to compute nodes, the memory node registers the region with
the memory manager. Later, when a compute node requires
far memory, the compute node sends an allocation request to
the memory manager, who then assigns a registered, unallo-
cated region. Upon receiving a deallocation message from a
compute node, the memory manager marks the associated re-
gion as available for use by other compute nodes. A memory

1Carbink is a Pokémon that has a high defense score.

1



node can ask the memory manager to deregister a previously
registered (but currently unallocated) region, withdrawing the
region from the global pool of far memory.

Carbink does not require participating machines to use cus-
tom hardware. For example, any machine in a datacenter can
be a memory node if that machine runs the Carbink memory
host daemon. Similarly, any machine can be a compute node
if that node’s applications use the Carbink runtime.

From the perspective of an application developer, the
Carbink runtime allows a program to dynamically allocate
and deallocate memory objects of arbitrary size. Programs ac-
cess those objects through AIFM-like remotable pointers [23].
When applications dereference pointers that refer to non-local
(i.e., swapped-out) objects, Carbink pulls the desired objects
from far memory. Under the hood, Carbink’s runtime manages
objects using spans and spansets. A span is a contiguous run
of memory pages; a single region allocated by a compute
node contains one or more spans. Similar to slab allocators
like Facebook’s jemalloc [9] and Google’s TCMalloc [10,12],
Carbink rounds up each object allocation to the bin size of the
relevant span, and aligns each span to the page size used by
compute nodes and memory nodes. Carbink swaps far mem-
ory into local memory at the granularity of a span; however,
when local memory pressure is high, Carbink swaps local
memory out to far memory at the granularity of a spanset
(i.e., a collection of spans of the same size). In preparation
for swap-outs, background threads on compute nodes group
cold objects into cold spans, and bundle a group of cold spans
into a spanset; at eviction time, the threads generate erasure-
coding parity data for the spanset, and then evict the spanset
and the parity data to remote nodes. We term this approach
EC-Batch, as spans are evicted in batches.

In Carbink, each span lives in exactly one place: the local
RAM of a compute node, or the far RAM of a memory node.
Thus, swapping a span from far RAM to local RAM creates
dead space (and thus fragmentation) in far RAM. Carbink
runs pauseless defragmentation threads in the background,
asynchronously reclaiming space to use for later swap-outs.

Carbink disallows cross-application memory sharing. This
approach is a natural fit for our target applications, and has
the advantage of simplifying failure recovery and avoiding
the need for expensive coherence traffic [24].

3 Evaluation
Microbenchmarks: To get a preliminary idea of Carbink’s
performance, we created a synthetic benchmark that wrote 15
million 1 KB objects (totalling 15 GB) to a remotable array.
The compute node’s local memory had space to store 7.5
GB of objects (i.e., half of the total set). The compute node
spawned 128 threads on 32 logical cores to access objects;
the access pattern had a Zipfian-distributed [22] skew of 0.99.

Figure 2 shows the 99th-percentile latency with various
object access loads. Both of the fault-tolerant schemes even-
tually hit a “hockey stick” in tail latency growth when the

0 2 4 6
Offered load (Mops)

0

100

200

300

99
 p

er
ce

nt
ile

 la
te

nc
y 

(μ
s)

Non-FT
Hydra
EC-Batch

Figure 2: Microbenchmark load-
latency curves.

0 25 50 75 100
Local memory (% of 50GB)

0

20

40

60

Th
ro

ug
hp

ut
(T

PS
x1

k)

Non-FT
Hydra
EC-Batch

Figure 3: KV-store transaction
throughput.

schemes could no longer catch up with the offered load. EC-
Batch had the highest sustained throughput (6.0 Mops), which
was 40% higher than the throughput of the state-of-the-art Hy-
dra (4.3 Mops). Hydra had worse performance because it had
to issue four RMA requests to swap in one span; thus, Hydra
quickly became bottlenecked by network IO. In contrast, EC-
Batch only issued one RMA request per swap-in. EC-Batch
had 18%-29% lower tail latency than Hydra under the same
load (before reaching the “hockey-stick”). The reason was
that Hydra’s larger number of RMAs per swap-in left Hydra
more vulnerable to stragglers [15]. Also recall that EC-Batch
can support computation offloading [4, 14, 23, 30], which is
hard with Hydra (§1).
Macrobenchmarks: We further evaluated Carbink using an
in-memory transactional key-value store that would benefit
from remote memory. This application implemented a transac-
tional in-memory B-tree, exposing it via a key/value interface
similar to that of MongoDB [20]. Each remotable object was
a 4 KB value stored in a B-tree leaf. The application spawned
128 threads, and each thread processed 20 K transactions.
The compute node provisioned 32 logical cores, with the
application overlapping execution of the threads for higher
throughput [13, 21, 23, 29]. Each transaction contained three
reads and three writes, similar to the TPC-A benchmark [27].
Each update created a new version of a particular key’s value;
asynchronously, the application trimmed old versions.
Throughput: Figure 3 shows the KV-store throughput when
varying the size of local memory (normalized as a fraction of
the maximum working set size). In scenarios with less than
50% local memory, EC-Batch achieved higher transactions
per second (TPS) than Hydra. For example, TPS for EC-Batch
was 1.5%-48% higher than that of Hydra; this was because
EC-Batch only needed one RMA request to swap in a span.
EC-Batch was at most 29% slower than Non-FT, mainly due
to the additional parity update required for fault tolerance.
Remote memory usage: Compared to Hydra, EC-Batch used
up to 35% more remote memory. EC-Batch defragmented
remote memory using compaction, but when local memory
space was less than 50%, remote compaction could not im-
mediately defragment the spanset holes created by frequent
span swap-ins. As local memory grew larger, span fetching
became less frequent, making it easier for remote compaction
to reclaim space. In this less hectic environment, EC-Batch’s
remote memory usage was similar to Hydra.

2



4 Discussions
Memory sharing across processes/applications: Carbink
relies on locks to synchronize remotable object accesses
among different application threads and background swap-
out threads in the same process. To extend Carbink cross
processes/applications, one possible approach is to rely on
shared memory across different processes to implement such
synchronization. Another possible approach is to rely on a sep-
arate process that handles and synchronizes object accesses
from all processes in one compute node. This approach is
similar to the microkernel approaches to host networking [19]
and filesystem [17].
Emerging hardware for disaggregated memory: Emerg-
ing high-performance compute-memory interconnects like
CXL [2] and CCIX [1] support pooled memory shared by
multiple CPU sockets and hardware-based cache coherence
between CPU memory and device memory. These intercon-
nects have enabled small-scale (i.e., 8-16 CPU sockets) mem-
ory disaggregation with nearly no performance loss [16]. In
this context, Carbink’s span-based erasure coding approach
can be applied to make the pooled memory tolerate individual
DIMM failure.
Scalability of the memory manager: Carbink memory
manager tracks the liveness of compute nodes and memory
nodes, and handles memory registration/deregistration and
allocation/deallocation. We expect the memory manager to
provide second-level liveness monitoring, while individual
compute nodes may implement millisecond- or microsecond-
level monitoring for the memory nodes they use. Thus the
liveness monitoring on the memory manager will less likely
become a bottleneck. Besides, the memory manager register-
s/deregisters and allocates/deallocates far memory in the unit
of GB-level regions; this avoids frequent involvements of the
memory manager and the manager only needs to maintain
small in-memory states for these region assignments.

References

[1] CCIX Consortium. https://www.ccixconsortium
.com/.

[2] Compute Express Link (CXL). https://www.comput
eexpresslink.org/.

[3] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, and et al. Remote Regions: A Simple Abstrac-
tion for Remote Memory. In Proceedings of USENIX
ATC, pages 775–787, 2018.

[4] Marcos K Aguilera, Kimberly Keeton, Stanko No-
vakovic, and Sharad Singhal. Designing Far Memory
Data Structures: Think Outside the Box. In Proceedings
of ACM HotOS, pages 120–126, 2019.

[5] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K. Aguilera, Au-
rojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can
Far Memory Improve Job Throughput? In Proceedings
of ACM EuroSys, pages 1–16, 2020.

[6] Cristina Băsescu and Bryan Ford. Immunizing Systems
from Distant Failures by Limiting Lamport Exposure.
In Proceedings of ACM HotNets, pages 199–205, 2021.

[7] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In Proceedings of USENIX NSDI, pages 401–414,
2014.

[8] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No Com-
promises: Distributed Transactions with Consistency,
Availability, and Performance. In Proceedings of ACM
SOSP, pages 54–70, 2015.

[9] Jason Evans. A Scalable Concurrent malloc (3) Imple-
mentation for FreeBSD. In Proceedings of BSDCan
Conference, 2006.

[10] Google. TCMalloc Open Source. https://github.c
om/google/tcmalloc.

[11] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient Memory Dis-
aggregation with INFINISWAP. In Proceedings of
USENIX NSDI, pages 649–667, 2017.

[12] Andrew Hamilton Hunter, Chris Kennelly, Paul Turner,
Darryl Gove, Tipp Moseley, and Parthasarathy Ran-
ganathan. Beyond Malloc Efficiency to Fleet Efficiency:
A Hugepage-Aware Memory Allocator. In Proceedings
of USENIX OSDI, pages 257–273, 2021.

[13] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Trans-
actions with Two-Sided RDMA Datagram RPCs. In
Proceedings of USENIX OSDI, pages 185–201, 2016.

[14] Dario Korolija, Dimitrios Koutsoukos, Kimberly Kee-
ton, Konstantin Taranov, Dejan Milojičić, and Gustavo
Alonso. Farview: Disaggregated Memory with Operator
Off-loading for Database Engines. In Proceedings of
Conference on Innovative Data Systems Research, 2022.

[15] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowd-
hury, Asaf Cidon, and Kang G. Shin. Mitigating
the Performance-Efficiency Tradeoff in Resilient Mem-
ory Disaggregation. arXiv preprint arXiv:1910.09727,
2019.

3

https://www.ccixconsortium.com/
https://www.ccixconsortium.com/
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://github.com/google/tcmalloc
https://github.com/google/tcmalloc


[16] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa
Hsu, Dan Ernst, Pantea Zardoshti, Monish Shah, Samir
Rajadnya, Scott Lee, Ishwar Agarwal, et al. Pond: CXL-
Based Memory Pooling Systems for Cloud Platforms.
2023.

[17] Jing Liu, Anthony Rebello, Yifan Dai, Chenhao Ye,
Sudarsun Kannan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Scale and Performance in a
Filesystem Semi-Microkernel. In Proceedings of ACM
SOSP, pages 819–835, 2021.

[18] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong
Xu, and Tongxin Bai. Imbalance in the Cloud: An Analy-
sis on Alibaba Cluster Trace. In Proceedings of IEEE In-
ternational Conference on Big Data, pages 2884–2892,
2017.

[19] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, and et al. Snap: A Microkernel Approach to Host
Networking. In Proceedings of ACM SOSP, pages 399–
413, 2019.

[20] MongoDB Inc. MongoDB Open Source. https://gi
thub.com/mongodb/mongo.

[21] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
High CPU Efficiency for Latency-Sensitive Datacenter
Workloads. In Proceedings of USENIX NSDI, pages
361–378, 2019.

[22] David M.W. Powers. Applications and Explanations of
Zipf’s Law. In Proceedings of New Methods in Lan-
guage Processing and Computational Natural Language
Learning, 1998.

[23] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-
era, and Adam Belay. AIFM: High-Performance,
Application-Integrated Far Memory. In Proceedings
of USENIX OSDI, pages 315–332, 2020.

[24] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A Disseminated, Distributed OS for
Hardware Resource Disaggregation. In Proceedings of
USENIX OSDI, pages 69–87, 2018.

[25] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan,
Jonathan Kaldor, Scott Michelson, Thawan Kooburat,
Aravind Anbudurai, and et al. Twine: A Unified Clus-
ter Management System for Shared Infrastructure. In
Proceedings of USENIX OSDI, pages 787–803, 2020.

[26] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: the Next Generation. In
Proceedings of ACM EuroSys, pages 1–14, 2020.

[27] Transaction Processing Performance Council (TPC).
TPC-A. http://tpc.org/tpca/default5.asp.

[28] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan
Ruan, Khanh Nguyen, Michael D. Bond, Ravi Netravali,
Miryung Kim, and Guoqing Harry Xu. Semeru: A
Memory-Disaggregated Managed Runtime. In Proceed-
ings of USENIX OSDI, pages 261–280, 2020.

[29] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-Enabled Distributed
Transactions: Hybrid Is Better! In Proceedings of
USENIX OSDI, pages 233–251, 2018.

[30] Jie You, Jingfeng Wu, Xin Jin, and Mosharaf Chowd-
hury. Ship Compute or Ship Data? Why Not Both? In
Proceedings of USENIX NSDI, pages 633–651, 2021.

4

https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
http://tpc.org/tpca/default5.asp

	Motivation
	Carbink Design
	Evaluation
	Discussions

